There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-1}{(4(2{x}^{2} + 2x + 1))} - (\frac{5}{2})arctan(2x + 1) - \frac{(\frac{5}{2})(2x + 1)}{(4{x}^{x} + 4x + 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{5x}{(4{x}^{x} + 4x + 2)} - \frac{5}{2}arctan(2x + 1) - \frac{1}{(8x^{2} + 8x + 4)} - \frac{\frac{5}{2}}{(4{x}^{x} + 4x + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{5x}{(4{x}^{x} + 4x + 2)} - \frac{5}{2}arctan(2x + 1) - \frac{1}{(8x^{2} + 8x + 4)} - \frac{\frac{5}{2}}{(4{x}^{x} + 4x + 2)}\right)}{dx}\\=& - 5(\frac{-(4({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) + 4 + 0)}{(4{x}^{x} + 4x + 2)^{2}})x - \frac{5}{(4{x}^{x} + 4x + 2)} - \frac{5}{2}(\frac{(2 + 0)}{(1 + (2x + 1)^{2})}) - (\frac{-(8*2x + 8 + 0)}{(8x^{2} + 8x + 4)^{2}}) - \frac{5}{2}(\frac{-(4({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) + 4 + 0)}{(4{x}^{x} + 4x + 2)^{2}})\\=&\frac{20x{x}^{x}ln(x)}{(4{x}^{x} + 4x + 2)^{2}} + \frac{20x{x}^{x}}{(4{x}^{x} + 4x + 2)^{2}} + \frac{20x}{(4{x}^{x} + 4x + 2)^{2}} + \frac{16x}{(8x^{2} + 8x + 4)^{2}} + \frac{10{x}^{x}ln(x)}{(4{x}^{x} + 4x + 2)^{2}} + \frac{10{x}^{x}}{(4{x}^{x} + 4x + 2)^{2}} - \frac{5}{(4{x}^{x} + 4x + 2)} + \frac{8}{(8x^{2} + 8x + 4)^{2}} + \frac{10}{(4{x}^{x} + 4x + 2)^{2}} - \frac{5}{(4x^{2} + 4x + 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!