There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(p + q + r + s)}^{5} + a{(p + q + r + s)}^{3} + (p + q + r + s)(b(p + q + r + s) + c) + d\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = p^{3}a + 3p^{2}qa + 3p^{2}ra + 3p^{2}sa + 3pq^{2}a + 6pqra + 6pqsa + 3pr^{2}a + 6prsa + 3ps^{2}a + q^{3}a + 3q^{2}ra + 3q^{2}sa + 3qr^{2}a + 6qrsa + 3qs^{2}a + r^{3}a + 3r^{2}sa + 3rs^{2}a + s^{3}a + 60p^{2}qrs + 20p^{3}rs + 2psb + 20p^{3}qs + 60pq^{2}rs + 30p^{2}q^{2}s + 30p^{2}r^{2}s + 30p^{2}rs^{2} + 10p^{3}s^{2} + 60pqr^{2}s + 60pqrs^{2} + 30p^{2}qs^{2} + 20pq^{3}r + 20pq^{3}s + 30pq^{2}r^{2} + 20pr^{3}s + 30pr^{2}s^{2} + 20prs^{3} + 10p^{2}s^{3} + 30p^{2}q^{2}r + 30pq^{2}s^{2} + 20pqr^{3} + 30p^{2}qr^{2} + 20p^{3}qr + 20pqs^{3} + 2pqb + 10p^{3}q^{2} + 5pq^{4} + 10p^{2}q^{3} + 2prb + 10p^{2}r^{3} + 10p^{3}r^{2} + 5p^{4}r + 5ps^{4} + p^{2}b + 20q^{3}rs + 2qsb + 30q^{2}r^{2}s + 30q^{2}rs^{2} + 10q^{3}s^{2} + 20qr^{3}s + 30qr^{2}s^{2} + 20qrs^{3} + 10q^{2}s^{3} + 2qrb + 10q^{2}r^{3} + 10q^{3}r^{2} + 5q^{4}r + 5qs^{4} + q^{2}b + 2rsb + 10r^{3}s^{2} + 10r^{2}s^{3} + 5rs^{4} + r^{2}b + s^{2}b + 5p^{4}q + 5pr^{4} + 5p^{4}s + pc + p^{5} + 5qr^{4} + 5q^{4}s + qc + q^{5} + 5r^{4}s + rc + r^{5} + sc + s^{5} + d\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( p^{3}a + 3p^{2}qa + 3p^{2}ra + 3p^{2}sa + 3pq^{2}a + 6pqra + 6pqsa + 3pr^{2}a + 6prsa + 3ps^{2}a + q^{3}a + 3q^{2}ra + 3q^{2}sa + 3qr^{2}a + 6qrsa + 3qs^{2}a + r^{3}a + 3r^{2}sa + 3rs^{2}a + s^{3}a + 60p^{2}qrs + 20p^{3}rs + 2psb + 20p^{3}qs + 60pq^{2}rs + 30p^{2}q^{2}s + 30p^{2}r^{2}s + 30p^{2}rs^{2} + 10p^{3}s^{2} + 60pqr^{2}s + 60pqrs^{2} + 30p^{2}qs^{2} + 20pq^{3}r + 20pq^{3}s + 30pq^{2}r^{2} + 20pr^{3}s + 30pr^{2}s^{2} + 20prs^{3} + 10p^{2}s^{3} + 30p^{2}q^{2}r + 30pq^{2}s^{2} + 20pqr^{3} + 30p^{2}qr^{2} + 20p^{3}qr + 20pqs^{3} + 2pqb + 10p^{3}q^{2} + 5pq^{4} + 10p^{2}q^{3} + 2prb + 10p^{2}r^{3} + 10p^{3}r^{2} + 5p^{4}r + 5ps^{4} + p^{2}b + 20q^{3}rs + 2qsb + 30q^{2}r^{2}s + 30q^{2}rs^{2} + 10q^{3}s^{2} + 20qr^{3}s + 30qr^{2}s^{2} + 20qrs^{3} + 10q^{2}s^{3} + 2qrb + 10q^{2}r^{3} + 10q^{3}r^{2} + 5q^{4}r + 5qs^{4} + q^{2}b + 2rsb + 10r^{3}s^{2} + 10r^{2}s^{3} + 5rs^{4} + r^{2}b + s^{2}b + 5p^{4}q + 5pr^{4} + 5p^{4}s + pc + p^{5} + 5qr^{4} + 5q^{4}s + qc + q^{5} + 5r^{4}s + rc + r^{5} + sc + s^{5} + d\right)}{dx}\\=&0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!