There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ sin(lg(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(lg(x))\right)}{dx}\\=&\frac{cos(lg(x))}{ln{10}(x)}\\=&\frac{cos(lg(x))}{xln{10}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{cos(lg(x))}{xln{10}}\right)}{dx}\\=&\frac{-cos(lg(x))}{x^{2}ln{10}} + \frac{-0cos(lg(x))}{xln^{2}{10}} + \frac{-sin(lg(x))}{xln{10}ln{10}(x)}\\=&\frac{-cos(lg(x))}{x^{2}ln{10}} - \frac{sin(lg(x))}{x^{2}ln^{2}{10}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-cos(lg(x))}{x^{2}ln{10}} - \frac{sin(lg(x))}{x^{2}ln^{2}{10}}\right)}{dx}\\=&\frac{--2cos(lg(x))}{x^{3}ln{10}} - \frac{-0cos(lg(x))}{x^{2}ln^{2}{10}} - \frac{-sin(lg(x))}{x^{2}ln{10}ln{10}(x)} - \frac{-2sin(lg(x))}{x^{3}ln^{2}{10}} - \frac{-2*0sin(lg(x))}{x^{2}ln^{3}{10}} - \frac{cos(lg(x))}{x^{2}ln^{2}{10}ln{10}(x)}\\=&\frac{2cos(lg(x))}{x^{3}ln{10}} + \frac{3sin(lg(x))}{x^{3}ln^{2}{10}} - \frac{cos(lg(x))}{x^{3}ln^{3}{10}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2cos(lg(x))}{x^{3}ln{10}} + \frac{3sin(lg(x))}{x^{3}ln^{2}{10}} - \frac{cos(lg(x))}{x^{3}ln^{3}{10}}\right)}{dx}\\=&\frac{2*-3cos(lg(x))}{x^{4}ln{10}} + \frac{2*-0cos(lg(x))}{x^{3}ln^{2}{10}} + \frac{2*-sin(lg(x))}{x^{3}ln{10}ln{10}(x)} + \frac{3*-3sin(lg(x))}{x^{4}ln^{2}{10}} + \frac{3*-2*0sin(lg(x))}{x^{3}ln^{3}{10}} + \frac{3cos(lg(x))}{x^{3}ln^{2}{10}ln{10}(x)} - \frac{-3cos(lg(x))}{x^{4}ln^{3}{10}} - \frac{-3*0cos(lg(x))}{x^{3}ln^{4}{10}} - \frac{-sin(lg(x))}{x^{3}ln^{3}{10}ln{10}(x)}\\=&\frac{-6cos(lg(x))}{x^{4}ln{10}} - \frac{11sin(lg(x))}{x^{4}ln^{2}{10}} + \frac{6cos(lg(x))}{x^{4}ln^{3}{10}} + \frac{sin(lg(x))}{x^{4}ln^{4}{10}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ cos(lg(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(lg(x))\right)}{dx}\\=&\frac{-sin(lg(x))}{ln{10}(x)}\\=&\frac{-sin(lg(x))}{xln{10}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin(lg(x))}{xln{10}}\right)}{dx}\\=&\frac{--sin(lg(x))}{x^{2}ln{10}} - \frac{-0sin(lg(x))}{xln^{2}{10}} - \frac{cos(lg(x))}{xln{10}ln{10}(x)}\\=&\frac{sin(lg(x))}{x^{2}ln{10}} - \frac{cos(lg(x))}{x^{2}ln^{2}{10}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{sin(lg(x))}{x^{2}ln{10}} - \frac{cos(lg(x))}{x^{2}ln^{2}{10}}\right)}{dx}\\=&\frac{-2sin(lg(x))}{x^{3}ln{10}} + \frac{-0sin(lg(x))}{x^{2}ln^{2}{10}} + \frac{cos(lg(x))}{x^{2}ln{10}ln{10}(x)} - \frac{-2cos(lg(x))}{x^{3}ln^{2}{10}} - \frac{-2*0cos(lg(x))}{x^{2}ln^{3}{10}} - \frac{-sin(lg(x))}{x^{2}ln^{2}{10}ln{10}(x)}\\=&\frac{-2sin(lg(x))}{x^{3}ln{10}} + \frac{3cos(lg(x))}{x^{3}ln^{2}{10}} + \frac{sin(lg(x))}{x^{3}ln^{3}{10}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2sin(lg(x))}{x^{3}ln{10}} + \frac{3cos(lg(x))}{x^{3}ln^{2}{10}} + \frac{sin(lg(x))}{x^{3}ln^{3}{10}}\right)}{dx}\\=&\frac{-2*-3sin(lg(x))}{x^{4}ln{10}} - \frac{2*-0sin(lg(x))}{x^{3}ln^{2}{10}} - \frac{2cos(lg(x))}{x^{3}ln{10}ln{10}(x)} + \frac{3*-3cos(lg(x))}{x^{4}ln^{2}{10}} + \frac{3*-2*0cos(lg(x))}{x^{3}ln^{3}{10}} + \frac{3*-sin(lg(x))}{x^{3}ln^{2}{10}ln{10}(x)} + \frac{-3sin(lg(x))}{x^{4}ln^{3}{10}} + \frac{-3*0sin(lg(x))}{x^{3}ln^{4}{10}} + \frac{cos(lg(x))}{x^{3}ln^{3}{10}ln{10}(x)}\\=&\frac{6sin(lg(x))}{x^{4}ln{10}} - \frac{11cos(lg(x))}{x^{4}ln^{2}{10}} - \frac{6sin(lg(x))}{x^{4}ln^{3}{10}} + \frac{cos(lg(x))}{x^{4}ln^{4}{10}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!