There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(x) + log_{3}^{x} + e^{x}{2}^{x} + \frac{arccos(x)sech(x)}{tanh(x)} + sqrt(9)cot(45)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x) + log_{3}^{x} + {2}^{x}e^{x} + \frac{arccos(x)sech(x)}{tanh(x)} + sqrt(9)cot(45)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x) + log_{3}^{x} + {2}^{x}e^{x} + \frac{arccos(x)sech(x)}{tanh(x)} + sqrt(9)cot(45)\right)}{dx}\\=&\frac{1}{(x)} + (\frac{(\frac{(1)}{(x)} - \frac{(0)log_{3}^{x}}{(3)})}{(ln(3))}) + ({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))e^{x} + {2}^{x}e^{x} + \frac{(\frac{-(1)}{((1 - (x)^{2})^{\frac{1}{2}})})sech(x)}{tanh(x)} + \frac{arccos(x)*-sech^{2}(x)sech(x)}{tanh^{2}(x)} + \frac{arccos(x)*-sech(x)tanh(x)}{tanh(x)} + 0*\frac{1}{2}*9^{\frac{1}{2}}cot(45) + sqrt(9)*-csc^{2}(45)*0\\=&\frac{1}{xln(3)} + \frac{1}{x} + {2}^{x}e^{x}ln(2) + {2}^{x}e^{x} - \frac{sech(x)}{(-x^{2} + 1)^{\frac{1}{2}}tanh(x)} - \frac{arccos(x)sech^{3}(x)}{tanh^{2}(x)} - arccos(x)sech(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{xln(3)} + \frac{1}{x} + {2}^{x}e^{x}ln(2) + {2}^{x}e^{x} - \frac{sech(x)}{(-x^{2} + 1)^{\frac{1}{2}}tanh(x)} - \frac{arccos(x)sech^{3}(x)}{tanh^{2}(x)} - arccos(x)sech(x)\right)}{dx}\\=&\frac{-1}{x^{2}ln(3)} + \frac{-0}{xln^{2}(3)(3)} + \frac{-1}{x^{2}} + ({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))e^{x}ln(2) + {2}^{x}e^{x}ln(2) + \frac{{2}^{x}e^{x}*0}{(2)} + ({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))e^{x} + {2}^{x}e^{x} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})sech(x)}{tanh(x)} - \frac{-sech^{2}(x)sech(x)}{(-x^{2} + 1)^{\frac{1}{2}}tanh^{2}(x)} - \frac{-sech(x)tanh(x)}{(-x^{2} + 1)^{\frac{1}{2}}tanh(x)} - \frac{(\frac{-(1)}{((1 - (x)^{2})^{\frac{1}{2}})})sech^{3}(x)}{tanh^{2}(x)} - \frac{arccos(x)*-2sech^{2}(x)sech^{3}(x)}{tanh^{3}(x)} - \frac{arccos(x)*-3sech^{2}(x)sech(x)tanh(x)}{tanh^{2}(x)} - (\frac{-(1)}{((1 - (x)^{2})^{\frac{1}{2}})})sech(x) - arccos(x)*-sech(x)tanh(x)\\=&\frac{-1}{x^{2}ln(3)} - \frac{1}{x^{2}} + {2}^{x}e^{x}ln^{2}(2) + 2 * {2}^{x}e^{x}ln(2) + {2}^{x}e^{x} - \frac{xsech(x)}{(-x^{2} + 1)^{\frac{3}{2}}tanh(x)} + \frac{sech^{3}(x)}{(-x^{2} + 1)^{\frac{1}{2}}tanh^{2}(x)} + \frac{sech(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{sech^{3}(x)}{(-x^{2} + 1)^{\frac{1}{2}}tanh^{2}(x)} + \frac{2arccos(x)sech^{5}(x)}{tanh^{3}(x)} + \frac{3arccos(x)sech^{3}(x)}{tanh(x)} + \frac{sech(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + arccos(x)tanh(x)sech(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!