There are 3 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ 4th\ derivative\ of\ function\ e^{lgx}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{lgx}\right)}{dx}\\=&e^{lgx}lg\\=&lge^{lgx}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( lge^{lgx}\right)}{dx}\\=&lge^{lgx}lg\\=&l^{2}g^{2}e^{lgx}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( l^{2}g^{2}e^{lgx}\right)}{dx}\\=&l^{2}g^{2}e^{lgx}lg\\=&l^{3}g^{3}e^{lgx}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( l^{3}g^{3}e^{lgx}\right)}{dx}\\=&l^{3}g^{3}e^{lgx}lg\\=&l^{4}g^{4}e^{lgx}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ 4th\ derivative\ of\ function\ e^{lg(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{lg(x)}\right)}{dx}\\=&\frac{e^{lg(x)}}{ln{10}(x)}\\=&\frac{e^{lg(x)}}{xln{10}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{e^{lg(x)}}{xln{10}}\right)}{dx}\\=&\frac{-e^{lg(x)}}{x^{2}ln{10}} + \frac{e^{lg(x)}}{xln{10}(x)ln{10}} + \frac{e^{lg(x)}*-0}{xln^{2}{10}}\\=&\frac{-e^{lg(x)}}{x^{2}ln{10}} + \frac{e^{lg(x)}}{x^{2}ln^{2}{10}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-e^{lg(x)}}{x^{2}ln{10}} + \frac{e^{lg(x)}}{x^{2}ln^{2}{10}}\right)}{dx}\\=&\frac{--2e^{lg(x)}}{x^{3}ln{10}} - \frac{e^{lg(x)}}{x^{2}ln{10}(x)ln{10}} - \frac{e^{lg(x)}*-0}{x^{2}ln^{2}{10}} + \frac{-2e^{lg(x)}}{x^{3}ln^{2}{10}} + \frac{e^{lg(x)}}{x^{2}ln{10}(x)ln^{2}{10}} + \frac{e^{lg(x)}*-2*0}{x^{2}ln^{3}{10}}\\=&\frac{2e^{lg(x)}}{x^{3}ln{10}} - \frac{3e^{lg(x)}}{x^{3}ln^{2}{10}} + \frac{e^{lg(x)}}{x^{3}ln^{3}{10}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2e^{lg(x)}}{x^{3}ln{10}} - \frac{3e^{lg(x)}}{x^{3}ln^{2}{10}} + \frac{e^{lg(x)}}{x^{3}ln^{3}{10}}\right)}{dx}\\=&\frac{2*-3e^{lg(x)}}{x^{4}ln{10}} + \frac{2e^{lg(x)}}{x^{3}ln{10}(x)ln{10}} + \frac{2e^{lg(x)}*-0}{x^{3}ln^{2}{10}} - \frac{3*-3e^{lg(x)}}{x^{4}ln^{2}{10}} - \frac{3e^{lg(x)}}{x^{3}ln{10}(x)ln^{2}{10}} - \frac{3e^{lg(x)}*-2*0}{x^{3}ln^{3}{10}} + \frac{-3e^{lg(x)}}{x^{4}ln^{3}{10}} + \frac{e^{lg(x)}}{x^{3}ln{10}(x)ln^{3}{10}} + \frac{e^{lg(x)}*-3*0}{x^{3}ln^{4}{10}}\\=&\frac{-6e^{lg(x)}}{x^{4}ln{10}} + \frac{11e^{lg(x)}}{x^{4}ln^{2}{10}} - \frac{6e^{lg(x)}}{x^{4}ln^{3}{10}} + \frac{e^{lg(x)}}{x^{4}ln^{4}{10}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ 4th\ derivative\ of\ function\ e^{{l}^{g}x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{x{l}^{g}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{x{l}^{g}}\right)}{dx}\\=&e^{x{l}^{g}}({l}^{g} + x({l}^{g}((0)ln(l) + \frac{(g)(0)}{(l)})))\\=&{l}^{g}e^{x{l}^{g}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {l}^{g}e^{x{l}^{g}}\right)}{dx}\\=&({l}^{g}((0)ln(l) + \frac{(g)(0)}{(l)}))e^{x{l}^{g}} + {l}^{g}e^{x{l}^{g}}({l}^{g} + x({l}^{g}((0)ln(l) + \frac{(g)(0)}{(l)})))\\=&{l}^{(2g)}e^{x{l}^{g}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {l}^{(2g)}e^{x{l}^{g}}\right)}{dx}\\=&({l}^{(2g)}((0)ln(l) + \frac{(2g)(0)}{(l)}))e^{x{l}^{g}} + {l}^{(2g)}e^{x{l}^{g}}({l}^{g} + x({l}^{g}((0)ln(l) + \frac{(g)(0)}{(l)})))\\=&{l}^{(3g)}e^{x{l}^{g}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {l}^{(3g)}e^{x{l}^{g}}\right)}{dx}\\=&({l}^{(3g)}((0)ln(l) + \frac{(3g)(0)}{(l)}))e^{x{l}^{g}} + {l}^{(3g)}e^{x{l}^{g}}({l}^{g} + x({l}^{g}((0)ln(l) + \frac{(g)(0)}{(l)})))\\=&{l}^{(4g)}e^{x{l}^{g}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!