There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ cos(x)cos(x) - cos(cos(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cos^{2}(x) - cos(cos(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos^{2}(x) - cos(cos(x))\right)}{dx}\\=&-2cos(x)sin(x) - -sin(cos(x))*-sin(x)\\=&-2sin(x)cos(x) - sin(x)sin(cos(x))\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -2sin(x)cos(x) - sin(x)sin(cos(x))\right)}{dx}\\=&-2cos(x)cos(x) - 2sin(x)*-sin(x) - cos(x)sin(cos(x)) - sin(x)cos(cos(x))*-sin(x)\\=&-2cos^{2}(x) - sin(cos(x))cos(x) + sin^{2}(x)cos(cos(x)) + 2sin^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -2cos^{2}(x) - sin(cos(x))cos(x) + sin^{2}(x)cos(cos(x)) + 2sin^{2}(x)\right)}{dx}\\=&-2*-2cos(x)sin(x) - cos(cos(x))*-sin(x)cos(x) - sin(cos(x))*-sin(x) + 2sin(x)cos(x)cos(cos(x)) + sin^{2}(x)*-sin(cos(x))*-sin(x) + 2*2sin(x)cos(x)\\=&2sin(x)cos(x)cos(cos(x)) + sin(x)cos(cos(x))cos(x) + sin(x)sin(cos(x)) + 8sin(x)cos(x) + sin(cos(x))sin^{3}(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 2sin(x)cos(x)cos(cos(x)) + sin(x)cos(cos(x))cos(x) + sin(x)sin(cos(x)) + 8sin(x)cos(x) + sin(cos(x))sin^{3}(x)\right)}{dx}\\=&2cos(x)cos(x)cos(cos(x)) + 2sin(x)*-sin(x)cos(cos(x)) + 2sin(x)cos(x)*-sin(cos(x))*-sin(x) + cos(x)cos(cos(x))cos(x) + sin(x)*-sin(cos(x))*-sin(x)cos(x) + sin(x)cos(cos(x))*-sin(x) + cos(x)sin(cos(x)) + sin(x)cos(cos(x))*-sin(x) + 8cos(x)cos(x) + 8sin(x)*-sin(x) + cos(cos(x))*-sin(x)sin^{3}(x) + sin(cos(x))*3sin^{2}(x)cos(x)\\=&3cos^{2}(x)cos(cos(x)) - 4sin^{2}(x)cos(cos(x)) + 3sin(cos(x))sin^{2}(x)cos(x) + sin(cos(x))cos(x) + 8cos^{2}(x) + 3sin^{2}(x)sin(cos(x))cos(x) - sin^{4}(x)cos(cos(x)) - 8sin^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ sin(x)sin(x) - sin(sin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin^{2}(x) - sin(sin(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin^{2}(x) - sin(sin(x))\right)}{dx}\\=&2sin(x)cos(x) - cos(sin(x))cos(x)\\=&2sin(x)cos(x) - cos(x)cos(sin(x))\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2sin(x)cos(x) - cos(x)cos(sin(x))\right)}{dx}\\=&2cos(x)cos(x) + 2sin(x)*-sin(x) - -sin(x)cos(sin(x)) - cos(x)*-sin(sin(x))cos(x)\\=&2cos^{2}(x) + sin(x)cos(sin(x)) + sin(sin(x))cos^{2}(x) - 2sin^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2cos^{2}(x) + sin(x)cos(sin(x)) + sin(sin(x))cos^{2}(x) - 2sin^{2}(x)\right)}{dx}\\=&2*-2cos(x)sin(x) + cos(x)cos(sin(x)) + sin(x)*-sin(sin(x))cos(x) + cos(sin(x))cos(x)cos^{2}(x) + sin(sin(x))*-2cos(x)sin(x) - 2*2sin(x)cos(x)\\=&-8sin(x)cos(x) + cos(x)cos(sin(x)) - 3sin(x)sin(sin(x))cos(x) + cos^{3}(x)cos(sin(x))\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -8sin(x)cos(x) + cos(x)cos(sin(x)) - 3sin(x)sin(sin(x))cos(x) + cos^{3}(x)cos(sin(x))\right)}{dx}\\=&-8cos(x)cos(x) - 8sin(x)*-sin(x) + -sin(x)cos(sin(x)) + cos(x)*-sin(sin(x))cos(x) - 3cos(x)sin(sin(x))cos(x) - 3sin(x)cos(sin(x))cos(x)cos(x) - 3sin(x)sin(sin(x))*-sin(x) + -3cos^{2}(x)sin(x)cos(sin(x)) + cos^{3}(x)*-sin(sin(x))cos(x)\\=&-8cos^{2}(x) + 3sin^{2}(x)sin(sin(x)) - 6sin(x)cos^{2}(x)cos(sin(x)) - 4sin(sin(x))cos^{2}(x) - sin(x)cos(sin(x)) - sin(sin(x))cos^{4}(x) + 8sin^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!