There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ lg(th(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg(th(x))\right)}{dx}\\=&\frac{(1 - th^{2}(x))}{ln{10}(th(x))}\\=&\frac{1}{ln{10}th(x)} - \frac{th(x)}{ln{10}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{ln{10}th(x)} - \frac{th(x)}{ln{10}}\right)}{dx}\\=&\frac{-0}{ln^{2}{10}th(x)} + \frac{-(1 - th^{2}(x))}{ln{10}th^{2}(x)} - \frac{-0th(x)}{ln^{2}{10}} - \frac{(1 - th^{2}(x))}{ln{10}}\\=&\frac{-1}{ln{10}th^{2}(x)} + \frac{th^{2}(x)}{ln{10}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{ln{10}th^{2}(x)} + \frac{th^{2}(x)}{ln{10}}\right)}{dx}\\=&\frac{--0}{ln^{2}{10}th^{2}(x)} - \frac{-2(1 - th^{2}(x))}{ln{10}th^{3}(x)} + \frac{-0th^{2}(x)}{ln^{2}{10}} + \frac{2th(x)(1 - th^{2}(x))}{ln{10}}\\=&\frac{2}{ln{10}th^{3}(x)} - \frac{2}{ln{10}th(x)} - \frac{2th^{3}(x)}{ln{10}} + \frac{2th(x)}{ln{10}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{ln{10}th^{3}(x)} - \frac{2}{ln{10}th(x)} - \frac{2th^{3}(x)}{ln{10}} + \frac{2th(x)}{ln{10}}\right)}{dx}\\=&\frac{2*-0}{ln^{2}{10}th^{3}(x)} + \frac{2*-3(1 - th^{2}(x))}{ln{10}th^{4}(x)} - \frac{2*-0}{ln^{2}{10}th(x)} - \frac{2*-(1 - th^{2}(x))}{ln{10}th^{2}(x)} - \frac{2*-0th^{3}(x)}{ln^{2}{10}} - \frac{2*3th^{2}(x)(1 - th^{2}(x))}{ln{10}} + \frac{2*-0th(x)}{ln^{2}{10}} + \frac{2(1 - th^{2}(x))}{ln{10}}\\=&\frac{-6}{ln{10}th^{4}(x)} + \frac{8}{ln{10}th^{2}(x)} + \frac{6th^{4}(x)}{ln{10}} - \frac{8th^{2}(x)}{ln{10}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ lg(tanh(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg(tanh(x))\right)}{dx}\\=&\frac{sech^{2}(x)}{ln{10}(tanh(x))}\\=&\frac{sech^{2}(x)}{ln{10}tanh(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{sech^{2}(x)}{ln{10}tanh(x)}\right)}{dx}\\=&\frac{-0sech^{2}(x)}{ln^{2}{10}tanh(x)} + \frac{-sech^{2}(x)sech^{2}(x)}{ln{10}tanh^{2}(x)} + \frac{-2sech(x)sech(x)tanh(x)}{ln{10}tanh(x)}\\=&\frac{-sech^{4}(x)}{ln{10}tanh^{2}(x)} - \frac{2sech^{2}(x)}{ln{10}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sech^{4}(x)}{ln{10}tanh^{2}(x)} - \frac{2sech^{2}(x)}{ln{10}}\right)}{dx}\\=&\frac{--0sech^{4}(x)}{ln^{2}{10}tanh^{2}(x)} - \frac{-2sech^{2}(x)sech^{4}(x)}{ln{10}tanh^{3}(x)} - \frac{-4sech^{3}(x)sech(x)tanh(x)}{ln{10}tanh^{2}(x)} - \frac{2*-0sech^{2}(x)}{ln^{2}{10}} - \frac{2*-2sech(x)sech(x)tanh(x)}{ln{10}}\\=&\frac{2sech^{6}(x)}{ln{10}tanh^{3}(x)} + \frac{4sech^{4}(x)}{ln{10}tanh(x)} + \frac{4tanh(x)sech^{2}(x)}{ln{10}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2sech^{6}(x)}{ln{10}tanh^{3}(x)} + \frac{4sech^{4}(x)}{ln{10}tanh(x)} + \frac{4tanh(x)sech^{2}(x)}{ln{10}}\right)}{dx}\\=&\frac{2*-0sech^{6}(x)}{ln^{2}{10}tanh^{3}(x)} + \frac{2*-3sech^{2}(x)sech^{6}(x)}{ln{10}tanh^{4}(x)} + \frac{2*-6sech^{5}(x)sech(x)tanh(x)}{ln{10}tanh^{3}(x)} + \frac{4*-0sech^{4}(x)}{ln^{2}{10}tanh(x)} + \frac{4*-sech^{2}(x)sech^{4}(x)}{ln{10}tanh^{2}(x)} + \frac{4*-4sech^{3}(x)sech(x)tanh(x)}{ln{10}tanh(x)} + \frac{4*-0tanh(x)sech^{2}(x)}{ln^{2}{10}} + \frac{4sech^{2}(x)sech^{2}(x)}{ln{10}} + \frac{4tanh(x)*-2sech(x)sech(x)tanh(x)}{ln{10}}\\=& - \frac{6sech^{8}(x)}{ln{10}tanh^{4}(x)} - \frac{16sech^{6}(x)}{ln{10}tanh^{2}(x)} - \frac{12sech^{4}(x)}{ln{10}} - \frac{8tanh^{2}(x)sech^{2}(x)}{ln{10}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!