There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ arcsin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(x)\right)}{dx}\\=&(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})\\=&\frac{x}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{x}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\=&\frac{3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&3(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2} + \frac{3*2x}{(-x^{2} + 1)^{\frac{5}{2}}} + (\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})\\=&\frac{15x^{3}}{(-x^{2} + 1)^{\frac{7}{2}}} + \frac{9x}{(-x^{2} + 1)^{\frac{5}{2}}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ asin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( asin(x)\right)}{dx}\\=&acos(x)\\=&acos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( acos(x)\right)}{dx}\\=&a*-sin(x)\\=&-asin(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -asin(x)\right)}{dx}\\=&-acos(x)\\=&-acos(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -acos(x)\right)}{dx}\\=&-a*-sin(x)\\=&asin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!