There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{((\frac{{(3x + 1)}^{1}}{3}){x}^{2})}{(\frac{({(2x + 1)}^{\frac{1}{2}}){(1 - 5x)}^{1}}{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3x^{3}}{(-5x + 1)(2x + 1)^{\frac{1}{2}}} + \frac{x^{2}}{(-5x + 1)(2x + 1)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3x^{3}}{(-5x + 1)(2x + 1)^{\frac{1}{2}}} + \frac{x^{2}}{(-5x + 1)(2x + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{3(\frac{-(-5 + 0)}{(-5x + 1)^{2}})x^{3}}{(2x + 1)^{\frac{1}{2}}} + \frac{3(\frac{\frac{-1}{2}(2 + 0)}{(2x + 1)^{\frac{3}{2}}})x^{3}}{(-5x + 1)} + \frac{3*3x^{2}}{(-5x + 1)(2x + 1)^{\frac{1}{2}}} + \frac{(\frac{-(-5 + 0)}{(-5x + 1)^{2}})x^{2}}{(2x + 1)^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}(2 + 0)}{(2x + 1)^{\frac{3}{2}}})x^{2}}{(-5x + 1)} + \frac{2x}{(-5x + 1)(2x + 1)^{\frac{1}{2}}}\\=&\frac{15x^{3}}{(-5x + 1)^{2}(2x + 1)^{\frac{1}{2}}} - \frac{3x^{3}}{(2x + 1)^{\frac{3}{2}}(-5x + 1)} + \frac{9x^{2}}{(2x + 1)^{\frac{1}{2}}(-5x + 1)} + \frac{5x^{2}}{(-5x + 1)^{2}(2x + 1)^{\frac{1}{2}}} - \frac{x^{2}}{(2x + 1)^{\frac{3}{2}}(-5x + 1)} + \frac{2x}{(2x + 1)^{\frac{1}{2}}(-5x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!