There are 6 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/6]Find\ the\ 4th\ derivative\ of\ function\ cos(x + y)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(x + y)\right)}{dx}\\=&-sin(x + y)(1 + 0)\\=&-sin(x + y)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -sin(x + y)\right)}{dx}\\=&-cos(x + y)(1 + 0)\\=&-cos(x + y)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -cos(x + y)\right)}{dx}\\=&--sin(x + y)(1 + 0)\\=&sin(x + y)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( sin(x + y)\right)}{dx}\\=&cos(x + y)(1 + 0)\\=&cos(x + y)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/6]Find\ the\ 4th\ derivative\ of\ function\ cos(x)cos(y) - sin(x)sin(y)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(x)cos(y) - sin(x)sin(y)\right)}{dx}\\=&-sin(x)cos(y) + cos(x)*-sin(y)*0 - cos(x)sin(y) - sin(x)cos(y)*0\\=&-sin(x)cos(y) - sin(y)cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -sin(x)cos(y) - sin(y)cos(x)\right)}{dx}\\=&-cos(x)cos(y) - sin(x)*-sin(y)*0 - cos(y)*0cos(x) - sin(y)*-sin(x)\\=&-cos(x)cos(y) + sin(x)sin(y)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -cos(x)cos(y) + sin(x)sin(y)\right)}{dx}\\=&--sin(x)cos(y) - cos(x)*-sin(y)*0 + cos(x)sin(y) + sin(x)cos(y)*0\\=&sin(x)cos(y) + sin(y)cos(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( sin(x)cos(y) + sin(y)cos(x)\right)}{dx}\\=&cos(x)cos(y) + sin(x)*-sin(y)*0 + cos(y)*0cos(x) + sin(y)*-sin(x)\\=&cos(x)cos(y) - sin(x)sin(y)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/6]Find\ the\ 4th\ derivative\ of\ function\ sin(x + y)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x + y)\right)}{dx}\\=&cos(x + y)(1 + 0)\\=&cos(x + y)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos(x + y)\right)}{dx}\\=&-sin(x + y)(1 + 0)\\=&-sin(x + y)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -sin(x + y)\right)}{dx}\\=&-cos(x + y)(1 + 0)\\=&-cos(x + y)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -cos(x + y)\right)}{dx}\\=&--sin(x + y)(1 + 0)\\=&sin(x + y)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/6]Find\ the\ 4th\ derivative\ of\ function\ sin(x)cos(y) + cos(x)sin(y)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x)cos(y) + sin(y)cos(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x)cos(y) + sin(y)cos(x)\right)}{dx}\\=&cos(x)cos(y) + sin(x)*-sin(y)*0 + cos(y)*0cos(x) + sin(y)*-sin(x)\\=&cos(x)cos(y) - sin(x)sin(y)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos(x)cos(y) - sin(x)sin(y)\right)}{dx}\\=&-sin(x)cos(y) + cos(x)*-sin(y)*0 - cos(x)sin(y) - sin(x)cos(y)*0\\=&-sin(x)cos(y) - sin(y)cos(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -sin(x)cos(y) - sin(y)cos(x)\right)}{dx}\\=&-cos(x)cos(y) - sin(x)*-sin(y)*0 - cos(y)*0cos(x) - sin(y)*-sin(x)\\=&-cos(x)cos(y) + sin(x)sin(y)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -cos(x)cos(y) + sin(x)sin(y)\right)}{dx}\\=&--sin(x)cos(y) - cos(x)*-sin(y)*0 + cos(x)sin(y) + sin(x)cos(y)*0\\=&sin(x)cos(y) + sin(y)cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[5/6]Find\ the\ 4th\ derivative\ of\ function\ tan(x + y)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan(x + y)\right)}{dx}\\=&sec^{2}(x + y)(1 + 0)\\=&sec^{2}(x + y)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sec^{2}(x + y)\right)}{dx}\\=&2sec^{2}(x + y)tan(x + y)(1 + 0)\\=&2tan(x + y)sec^{2}(x + y)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2tan(x + y)sec^{2}(x + y)\right)}{dx}\\=&2sec^{2}(x + y)(1 + 0)sec^{2}(x + y) + 2tan(x + y)*2sec^{2}(x + y)tan(x + y)(1 + 0)\\=&2sec^{4}(x + y) + 4tan^{2}(x + y)sec^{2}(x + y)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 2sec^{4}(x + y) + 4tan^{2}(x + y)sec^{2}(x + y)\right)}{dx}\\=&2*4sec^{4}(x + y)tan(x + y)(1 + 0) + 4*2tan(x + y)sec^{2}(x + y)(1 + 0)sec^{2}(x + y) + 4tan^{2}(x + y)*2sec^{2}(x + y)tan(x + y)(1 + 0)\\=&16tan(x + y)sec^{4}(x + y) + 8tan^{3}(x + y)sec^{2}(x + y)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[6/6]Find\ the\ 4th\ derivative\ of\ function\ \frac{(tan(x) + tan(y))}{(1 - tan(x)tan(y))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{tan(x)}{(-tan(x)tan(y) + 1)} + \frac{tan(y)}{(-tan(x)tan(y) + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{tan(x)}{(-tan(x)tan(y) + 1)} + \frac{tan(y)}{(-tan(x)tan(y) + 1)}\right)}{dx}\\=&(\frac{-(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{2}})tan(x) + \frac{sec^{2}(x)(1)}{(-tan(x)tan(y) + 1)} + (\frac{-(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{2}})tan(y) + \frac{sec^{2}(y)(0)}{(-tan(x)tan(y) + 1)}\\=&\frac{tan(y)tan(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{sec^{2}(x)}{(-tan(x)tan(y) + 1)} + \frac{tan^{2}(y)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{tan(y)tan(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{sec^{2}(x)}{(-tan(x)tan(y) + 1)} + \frac{tan^{2}(y)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}}\right)}{dx}\\=&(\frac{-2(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{3}})tan(y)tan(x)sec^{2}(x) + \frac{sec^{2}(y)(0)tan(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{tan(y)sec^{2}(x)(1)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{tan(y)tan(x)*2sec^{2}(x)tan(x)}{(-tan(x)tan(y) + 1)^{2}} + (\frac{-(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{2}})sec^{2}(x) + \frac{2sec^{2}(x)tan(x)}{(-tan(x)tan(y) + 1)} + (\frac{-2(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{3}})tan^{2}(y)sec^{2}(x) + \frac{2tan(y)sec^{2}(y)(0)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{tan^{2}(y)*2sec^{2}(x)tan(x)}{(-tan(x)tan(y) + 1)^{2}}\\=&\frac{2tan^{2}(y)tan(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan(y)tan^{2}(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan^{3}(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)} + \frac{2tan(x)tan^{2}(y)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2tan^{2}(y)tan(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan(y)tan^{2}(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan^{3}(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)} + \frac{2tan(x)tan^{2}(y)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}}\right)}{dx}\\=&2(\frac{-3(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{4}})tan^{2}(y)tan(x)sec^{4}(x) + \frac{2*2tan(y)sec^{2}(y)(0)tan(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan^{2}(y)sec^{2}(x)(1)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan^{2}(y)tan(x)*4sec^{4}(x)tan(x)}{(-tan(x)tan(y) + 1)^{3}} + 2(\frac{-2(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{3}})tan(y)sec^{4}(x) + \frac{2sec^{2}(y)(0)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan(y)*4sec^{4}(x)tan(x)}{(-tan(x)tan(y) + 1)^{2}} + 2(\frac{-2(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{3}})tan(y)tan^{2}(x)sec^{2}(x) + \frac{2sec^{2}(y)(0)tan^{2}(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan(y)*2tan(x)sec^{2}(x)(1)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan(y)tan^{2}(x)*2sec^{2}(x)tan(x)}{(-tan(x)tan(y) + 1)^{2}} + 2(\frac{-3(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{4}})tan^{3}(y)sec^{4}(x) + \frac{2*3tan^{2}(y)sec^{2}(y)(0)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan^{3}(y)*4sec^{4}(x)tan(x)}{(-tan(x)tan(y) + 1)^{3}} + 2(\frac{-(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{2}})tan(x)sec^{2}(x) + \frac{2sec^{2}(x)(1)sec^{2}(x)}{(-tan(x)tan(y) + 1)} + \frac{2tan(x)*2sec^{2}(x)tan(x)}{(-tan(x)tan(y) + 1)} + 2(\frac{-2(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{3}})tan(x)tan^{2}(y)sec^{2}(x) + \frac{2sec^{2}(x)(1)tan^{2}(y)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan(x)*2tan(y)sec^{2}(y)(0)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan(x)tan^{2}(y)*2sec^{2}(x)tan(x)}{(-tan(x)tan(y) + 1)^{2}}\\=&\frac{6tan^{3}(y)tan(x)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{6tan^{2}(y)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{12tan^{2}(y)tan^{2}(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{12tan(x)tan(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{4tan(y)tan^{3}(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{6tan^{4}(y)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{8tan(x)tan^{3}(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan(y)tan(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2sec^{4}(x)}{(-tan(x)tan(y) + 1)} + \frac{4tan^{2}(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)} + \frac{4tan^{3}(y)tan(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan^{2}(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{4tan^{2}(x)tan^{2}(y)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{6tan^{3}(y)tan(x)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{6tan^{2}(y)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{12tan^{2}(y)tan^{2}(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{12tan(x)tan(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{4tan(y)tan^{3}(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{6tan^{4}(y)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{8tan(x)tan^{3}(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan(y)tan(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2sec^{4}(x)}{(-tan(x)tan(y) + 1)} + \frac{4tan^{2}(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)} + \frac{4tan^{3}(y)tan(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{2tan^{2}(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{4tan^{2}(x)tan^{2}(y)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}}\right)}{dx}\\=&6(\frac{-4(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{5}})tan^{3}(y)tan(x)sec^{6}(x) + \frac{6*3tan^{2}(y)sec^{2}(y)(0)tan(x)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{6tan^{3}(y)sec^{2}(x)(1)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{6tan^{3}(y)tan(x)*6sec^{6}(x)tan(x)}{(-tan(x)tan(y) + 1)^{4}} + 6(\frac{-3(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{4}})tan^{2}(y)sec^{6}(x) + \frac{6*2tan(y)sec^{2}(y)(0)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{6tan^{2}(y)*6sec^{6}(x)tan(x)}{(-tan(x)tan(y) + 1)^{3}} + 12(\frac{-3(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{4}})tan^{2}(y)tan^{2}(x)sec^{4}(x) + \frac{12*2tan(y)sec^{2}(y)(0)tan^{2}(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{12tan^{2}(y)*2tan(x)sec^{2}(x)(1)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{12tan^{2}(y)tan^{2}(x)*4sec^{4}(x)tan(x)}{(-tan(x)tan(y) + 1)^{3}} + 12(\frac{-2(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{3}})tan(x)tan(y)sec^{4}(x) + \frac{12sec^{2}(x)(1)tan(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{12tan(x)sec^{2}(y)(0)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{12tan(x)tan(y)*4sec^{4}(x)tan(x)}{(-tan(x)tan(y) + 1)^{2}} + 4(\frac{-2(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{3}})tan(y)tan^{3}(x)sec^{2}(x) + \frac{4sec^{2}(y)(0)tan^{3}(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{4tan(y)*3tan^{2}(x)sec^{2}(x)(1)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{4tan(y)tan^{3}(x)*2sec^{2}(x)tan(x)}{(-tan(x)tan(y) + 1)^{2}} + 6(\frac{-4(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{5}})tan^{4}(y)sec^{6}(x) + \frac{6*4tan^{3}(y)sec^{2}(y)(0)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{6tan^{4}(y)*6sec^{6}(x)tan(x)}{(-tan(x)tan(y) + 1)^{4}} + 8(\frac{-3(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{4}})tan(x)tan^{3}(y)sec^{4}(x) + \frac{8sec^{2}(x)(1)tan^{3}(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{8tan(x)*3tan^{2}(y)sec^{2}(y)(0)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{8tan(x)tan^{3}(y)*4sec^{4}(x)tan(x)}{(-tan(x)tan(y) + 1)^{3}} + 2(\frac{-2(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{3}})tan(y)tan(x)sec^{4}(x) + \frac{2sec^{2}(y)(0)tan(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan(y)sec^{2}(x)(1)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan(y)tan(x)*4sec^{4}(x)tan(x)}{(-tan(x)tan(y) + 1)^{2}} + 2(\frac{-(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{2}})sec^{4}(x) + \frac{2*4sec^{4}(x)tan(x)}{(-tan(x)tan(y) + 1)} + 4(\frac{-(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{2}})tan^{2}(x)sec^{2}(x) + \frac{4*2tan(x)sec^{2}(x)(1)sec^{2}(x)}{(-tan(x)tan(y) + 1)} + \frac{4tan^{2}(x)*2sec^{2}(x)tan(x)}{(-tan(x)tan(y) + 1)} + 4(\frac{-3(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{4}})tan^{3}(y)tan(x)sec^{4}(x) + \frac{4*3tan^{2}(y)sec^{2}(y)(0)tan(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{4tan^{3}(y)sec^{2}(x)(1)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{4tan^{3}(y)tan(x)*4sec^{4}(x)tan(x)}{(-tan(x)tan(y) + 1)^{3}} + 2(\frac{-2(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{3}})tan^{2}(y)sec^{4}(x) + \frac{2*2tan(y)sec^{2}(y)(0)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{2tan^{2}(y)*4sec^{4}(x)tan(x)}{(-tan(x)tan(y) + 1)^{2}} + 4(\frac{-2(-sec^{2}(x)(1)tan(y) - tan(x)sec^{2}(y)(0) + 0)}{(-tan(x)tan(y) + 1)^{3}})tan^{2}(x)tan^{2}(y)sec^{2}(x) + \frac{4*2tan(x)sec^{2}(x)(1)tan^{2}(y)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{4tan^{2}(x)*2tan(y)sec^{2}(y)(0)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{4tan^{2}(x)tan^{2}(y)*2sec^{2}(x)tan(x)}{(-tan(x)tan(y) + 1)^{2}}\\=&\frac{24tan^{4}(y)tan(x)sec^{8}(x)}{(-tan(x)tan(y) + 1)^{5}} + \frac{24tan^{3}(y)sec^{8}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{72tan^{3}(y)tan^{2}(x)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{60tan(x)tan^{2}(y)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{60tan^{2}(x)tan(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{56tan^{2}(y)tan^{3}(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{28tan^{2}(y)tan(x)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{16tan(y)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{8tan(y)tan^{4}(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{24tan^{5}(y)sec^{8}(x)}{(-tan(x)tan(y) + 1)^{5}} + \frac{36tan^{4}(y)tan(x)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{16tan^{3}(y)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{16tan(x)tan^{2}(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{32tan^{2}(x)tan^{3}(y)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{12tan(y)tan^{2}(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{2}} + \frac{16tan(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)} + \frac{36tan(x)tan^{4}(y)sec^{6}(x)}{(-tan(x)tan(y) + 1)^{4}} + \frac{24tan^{3}(y)tan^{2}(x)sec^{4}(x)}{(-tan(x)tan(y) + 1)^{3}} + \frac{8tan^{3}(x)sec^{2}(x)}{(-tan(x)tan(y) + 1)} + \frac{8tan^{3}(x)tan^{2}(y)sec^{2}(x)}{(-tan(x)tan(y) + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!