There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{(1)}{(sqrt(1 + x))}) + (\frac{(1)}{(sqrt(1 + 8))}) + sqrt((\frac{(8x)}{(8x + 8)}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{sqrt(x + 1)} + \frac{1}{sqrt(9)} + sqrt(\frac{8x}{(8x + 8)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{sqrt(x + 1)} + \frac{1}{sqrt(9)} + sqrt(\frac{8x}{(8x + 8)})\right)}{dx}\\=&\frac{-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}} + \frac{-0*\frac{1}{2}*9^{\frac{1}{2}}}{(9)} + \frac{(8(\frac{-(8 + 0)}{(8x + 8)^{2}})x + \frac{8}{(8x + 8)})*\frac{1}{2}}{(\frac{8x}{(8x + 8)})^{\frac{1}{2}}}\\=&\frac{4}{8^{\frac{1}{2}}(8x + 8)^{\frac{1}{2}}x^{\frac{1}{2}}} - \frac{32x^{\frac{1}{2}}}{8^{\frac{1}{2}}(8x + 8)^{\frac{3}{2}}} - \frac{1}{2(x + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!