There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ -4{sin(x)}^{3} + 3sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -4sin^{3}(x) + 3sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -4sin^{3}(x) + 3sin(x)\right)}{dx}\\=&-4*3sin^{2}(x)cos(x) + 3cos(x)\\=&-12sin^{2}(x)cos(x) + 3cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -12sin^{2}(x)cos(x) + 3cos(x)\right)}{dx}\\=&-12*2sin(x)cos(x)cos(x) - 12sin^{2}(x)*-sin(x) + 3*-sin(x)\\=&-24sin(x)cos^{2}(x) + 12sin^{3}(x) - 3sin(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -24sin(x)cos^{2}(x) + 12sin^{3}(x) - 3sin(x)\right)}{dx}\\=&-24cos(x)cos^{2}(x) - 24sin(x)*-2cos(x)sin(x) + 12*3sin^{2}(x)cos(x) - 3cos(x)\\=&-24cos^{3}(x) + 84sin^{2}(x)cos(x) - 3cos(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -24cos^{3}(x) + 84sin^{2}(x)cos(x) - 3cos(x)\right)}{dx}\\=&-24*-3cos^{2}(x)sin(x) + 84*2sin(x)cos(x)cos(x) + 84sin^{2}(x)*-sin(x) - 3*-sin(x)\\=&240sin(x)cos^{2}(x) - 84sin^{3}(x) + 3sin(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ 4{cos(x)}^{3} - 3cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4cos^{3}(x) - 3cos(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4cos^{3}(x) - 3cos(x)\right)}{dx}\\=&4*-3cos^{2}(x)sin(x) - 3*-sin(x)\\=&-12sin(x)cos^{2}(x) + 3sin(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -12sin(x)cos^{2}(x) + 3sin(x)\right)}{dx}\\=&-12cos(x)cos^{2}(x) - 12sin(x)*-2cos(x)sin(x) + 3cos(x)\\=&-12cos^{3}(x) + 24sin^{2}(x)cos(x) + 3cos(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -12cos^{3}(x) + 24sin^{2}(x)cos(x) + 3cos(x)\right)}{dx}\\=&-12*-3cos^{2}(x)sin(x) + 24*2sin(x)cos(x)cos(x) + 24sin^{2}(x)*-sin(x) + 3*-sin(x)\\=&84sin(x)cos^{2}(x) - 24sin^{3}(x) - 3sin(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 84sin(x)cos^{2}(x) - 24sin^{3}(x) - 3sin(x)\right)}{dx}\\=&84cos(x)cos^{2}(x) + 84sin(x)*-2cos(x)sin(x) - 24*3sin^{2}(x)cos(x) - 3cos(x)\\=&84cos^{3}(x) - 240sin^{2}(x)cos(x) - 3cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!