There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{10}{(145000 + x)}^{\frac{9}{10}} + \frac{9}{10}{(145000 - (\frac{x}{9}))}^{\frac{9}{10}} + \frac{x}{900}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{10}(x + 145000)^{\frac{9}{10}} + \frac{9}{10}(\frac{-1}{9}x + 145000)^{\frac{9}{10}} + \frac{1}{900}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{10}(x + 145000)^{\frac{9}{10}} + \frac{9}{10}(\frac{-1}{9}x + 145000)^{\frac{9}{10}} + \frac{1}{900}x\right)}{dx}\\=&\frac{1}{10}(\frac{\frac{9}{10}(1 + 0)}{(x + 145000)^{\frac{1}{10}}}) + \frac{9}{10}(\frac{\frac{9}{10}(\frac{-1}{9} + 0)}{(\frac{-1}{9}x + 145000)^{\frac{1}{10}}}) + \frac{1}{900}\\=&\frac{9}{100(x + 145000)^{\frac{1}{10}}} - \frac{9}{100(\frac{-1}{9}x + 145000)^{\frac{1}{10}}} + \frac{1}{900}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!