There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ cosh(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cosh(x)\right)}{dx}\\=&sinh(x)\\=&sinh(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sinh(x)\right)}{dx}\\=&cosh(x)\\=&cosh(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( cosh(x)\right)}{dx}\\=&sinh(x)\\=&sinh(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( sinh(x)\right)}{dx}\\=&cosh(x)\\=&cosh(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ co(sh(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cosh(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cosh(x)\right)}{dx}\\=&coch(x)\\=&coch(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( coch(x)\right)}{dx}\\=&cosh(x)\\=&cosh(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( cosh(x)\right)}{dx}\\=&coch(x)\\=&coch(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( coch(x)\right)}{dx}\\=&cosh(x)\\=&cosh(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!