There are 3 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/3]Find\ the\ 4th\ derivative\ of\ function\ coth(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( coth(x)\right)}{dx}\\=&-csch^{2}(x)\\=&-csch^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -csch^{2}(x)\right)}{dx}\\=&--2csch(x)csch(x)coth(x)\\=&2coth(x)csch^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2coth(x)csch^{2}(x)\right)}{dx}\\=&2*-csch^{2}(x)csch^{2}(x) + 2coth(x)*-2csch(x)csch(x)coth(x)\\=&-2csch^{4}(x) - 4coth^{2}(x)csch^{2}(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -2csch^{4}(x) - 4coth^{2}(x)csch^{2}(x)\right)}{dx}\\=&-2*-4csch^{3}(x)csch(x)coth(x) - 4*-2coth(x)csch^{2}(x)csch^{2}(x) - 4coth^{2}(x)*-2csch(x)csch(x)coth(x)\\=&16coth(x)csch^{4}(x) + 8coth^{3}(x)csch^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/3]Find\ the\ 4th\ derivative\ of\ function\ co(th(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = coth(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( coth(x)\right)}{dx}\\=&co(1 - th^{2}(x))\\=& - coth^{2}(x) + co\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - coth^{2}(x) + co\right)}{dx}\\=& - co*2th(x)(1 - th^{2}(x)) + 0\\=& - 2coth(x) + 2coth^{3}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 2coth(x) + 2coth^{3}(x)\right)}{dx}\\=& - 2co(1 - th^{2}(x)) + 2co*3th^{2}(x)(1 - th^{2}(x))\\=&8coth^{2}(x) - 6coth^{4}(x) - 2co\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 8coth^{2}(x) - 6coth^{4}(x) - 2co\right)}{dx}\\=&8co*2th(x)(1 - th^{2}(x)) - 6co*4th^{3}(x)(1 - th^{2}(x)) + 0\\=&16coth(x) - 40coth^{3}(x) + 24coth^{5}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/3]Find\ the\ 4th\ derivative\ of\ function\ (cot(h)x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xcot(h)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xcot(h)\right)}{dx}\\=&cot(h) + x*-csc^{2}(h)*0\\=&cot(h)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cot(h)\right)}{dx}\\=&-csc^{2}(h)*0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!