There are 4 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/4]Find\ the\ 4th\ derivative\ of\ function\ arcsin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(x)\right)}{dx}\\=&(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})\\=&\frac{x}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{x}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\=&\frac{3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&3(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2} + \frac{3*2x}{(-x^{2} + 1)^{\frac{5}{2}}} + (\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})\\=&\frac{15x^{3}}{(-x^{2} + 1)^{\frac{7}{2}}} + \frac{9x}{(-x^{2} + 1)^{\frac{5}{2}}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/4]Find\ the\ 4th\ derivative\ of\ function\ arccos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccos(x)\right)}{dx}\\=&(\frac{-(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{-1}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&-(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})\\=&\frac{-x}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-x}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&-(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x - \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\=&\frac{-3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&-3(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2} - \frac{3*2x}{(-x^{2} + 1)^{\frac{5}{2}}} - (\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})\\=&\frac{-15x^{3}}{(-x^{2} + 1)^{\frac{7}{2}}} - \frac{9x}{(-x^{2} + 1)^{\frac{5}{2}}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/4]Find\ the\ 4th\ derivative\ of\ function\ arctan(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(x)\right)}{dx}\\=&(\frac{(1)}{(1 + (x)^{2})})\\=&\frac{1}{(x^{2} + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(x^{2} + 1)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})\\=&\frac{-2x}{(x^{2} + 1)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x}{(x^{2} + 1)^{2}}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x - \frac{2}{(x^{2} + 1)^{2}}\\=&\frac{8x^{2}}{(x^{2} + 1)^{3}} - \frac{2}{(x^{2} + 1)^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{8x^{2}}{(x^{2} + 1)^{3}} - \frac{2}{(x^{2} + 1)^{2}}\right)}{dx}\\=&8(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{2} + \frac{8*2x}{(x^{2} + 1)^{3}} - 2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})\\=&\frac{-48x^{3}}{(x^{2} + 1)^{4}} + \frac{24x}{(x^{2} + 1)^{3}}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/4]Find\ the\ 4th\ derivative\ of\ function\ arccot(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccot(x)\right)}{dx}\\=&(\frac{(1)}{(1 + (x)^{2})})\\=&\frac{1}{(x^{2} + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(x^{2} + 1)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})\\=&\frac{-2x}{(x^{2} + 1)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x}{(x^{2} + 1)^{2}}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x + \frac{-2}{(x^{2} + 1)^{2}}\\=&\frac{8x^{2}}{(x^{2} + 1)^{3}} + \frac{-2}{(x^{2} + 1)^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{8x^{2}}{(x^{2} + 1)^{3}} + \frac{-2}{(x^{2} + 1)^{2}}\right)}{dx}\\=&8(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{2} + \frac{8*2x}{(x^{2} + 1)^{3}} + -2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})\\=&\frac{-48x^{3}}{(x^{2} + 1)^{4}} + \frac{16x}{(x^{2} + 1)^{3}} + \frac{8x}{(x^{2} + 1)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!