There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{45sqrt(arccos(1 - \frac{2x}{90}) - \frac{sin(2arccos(1 - \frac{2x}{90}))}{2})}{sqrt(pi)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{45sqrt(arccos(\frac{-1}{45}x + 1) - \frac{1}{2}sin(2arccos(\frac{-1}{45}x + 1)))}{sqrt(pi)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{45sqrt(arccos(\frac{-1}{45}x + 1) - \frac{1}{2}sin(2arccos(\frac{-1}{45}x + 1)))}{sqrt(pi)}\right)}{dx}\\=&\frac{45*-0*\frac{1}{2}sqrt(arccos(\frac{-1}{45}x + 1) - \frac{1}{2}sin(2arccos(\frac{-1}{45}x + 1)))}{(pi)(pi)^{\frac{1}{2}}} + \frac{45((\frac{-(\frac{-1}{45} + 0)}{((1 - (\frac{-1}{45}x + 1)^{2})^{\frac{1}{2}})}) - \frac{1}{2}cos(2arccos(\frac{-1}{45}x + 1))*2(\frac{-(\frac{-1}{45} + 0)}{((1 - (\frac{-1}{45}x + 1)^{2})^{\frac{1}{2}})}))*\frac{1}{2}}{sqrt(pi)(arccos(\frac{-1}{45}x + 1) - \frac{1}{2}sin(2arccos(\frac{-1}{45}x + 1)))^{\frac{1}{2}}}\\=&\frac{1}{2(\frac{-1}{2025}x^{2} + \frac{2}{45}x)^{\frac{1}{2}}(arccos(\frac{-1}{45}x + 1) - \frac{1}{2}sin(2arccos(\frac{-1}{45}x + 1)))^{\frac{1}{2}}sqrt(pi)} - \frac{cos(2arccos(\frac{-1}{45}x + 1))}{2(\frac{-1}{2025}x^{2} + \frac{2}{45}x)^{\frac{1}{2}}(arccos(\frac{-1}{45}x + 1) - \frac{1}{2}sin(2arccos(\frac{-1}{45}x + 1)))^{\frac{1}{2}}sqrt(pi)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!