There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 0.1(\frac{(0.75 - 0.0434 - b)}{(0.25 + 0.0434 + b)} + \frac{(0.25 + 0.0434 + b)}{(0.25 - 0.0434 - b)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{0.1b}{(b + 0.2934)} + \frac{0.1b}{(-b + 0.2066)} + \frac{0.075}{(b + 0.2934)} + \frac{0.025}{(-b + 0.2066)} + \frac{0.00434}{(-b + 0.2066)} - \frac{0.00434}{(b + 0.2934)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{0.1b}{(b + 0.2934)} + \frac{0.1b}{(-b + 0.2066)} + \frac{0.075}{(b + 0.2934)} + \frac{0.025}{(-b + 0.2066)} + \frac{0.00434}{(-b + 0.2066)} - \frac{0.00434}{(b + 0.2934)}\right)}{dx}\\=& - 0.1(\frac{-(0 + 0)}{(b + 0.2934)^{2}})b + 0 + 0.1(\frac{-(0 + 0)}{(-b + 0.2066)^{2}})b + 0 + 0.075(\frac{-(0 + 0)}{(b + 0.2934)^{2}}) + 0.025(\frac{-(0 + 0)}{(-b + 0.2066)^{2}}) + 0.00434(\frac{-(0 + 0)}{(-b + 0.2066)^{2}}) - 0.00434(\frac{-(0 + 0)}{(b + 0.2934)^{2}})\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!