Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ a{x}^{(a - 1)}{(b - x)}^{(a - 1)}(b - 2x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ab(b - x)^{(a - 1)}{x}^{(a - 1)} - 2ax{x}^{(a - 1)}(b - x)^{(a - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ab(b - x)^{(a - 1)}{x}^{(a - 1)} - 2ax{x}^{(a - 1)}(b - x)^{(a - 1)}\right)}{dx}\\=&ab((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)} + ab(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)})) - 2a{x}^{(a - 1)}(b - x)^{(a - 1)} - 2ax({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)} - 2ax{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))\\=&\frac{-a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} + \frac{ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} + \frac{a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} - \frac{ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} - 2a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)} + \frac{2a^{2}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} - \frac{2ax(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} + \frac{ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} + \frac{a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} - \frac{ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} - 2a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)} + \frac{2a^{2}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} - \frac{2ax(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)}\right)}{dx}\\=&-(\frac{-(0 - 1)}{(b - x)^{2}})a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{a^{2}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)} - \frac{a^{2}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)} + (\frac{-(0 - 1)}{(b - x)^{2}})ab(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{ab((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)} + \frac{ab(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)} + \frac{a^{2}b*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} + \frac{a^{2}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x} + \frac{a^{2}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x} - \frac{ab*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} - \frac{ab({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x} - \frac{ab{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x} - 2a^{2}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)} - 2a^{2}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})) + 2(\frac{-(0 - 1)}{(b - x)^{2}})a^{2}x(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{2a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} + \frac{2a^{2}x((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)} + \frac{2a^{2}x(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)} - 2(\frac{-(0 - 1)}{(b - x)^{2}})ax(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{2a(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} - \frac{2ax((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)} - \frac{2ax(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)}\\=&\frac{-3a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} + \frac{a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} + \frac{2a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} + \frac{2ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} - \frac{3a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} + \frac{a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} - \frac{a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} + \frac{2a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} + \frac{2ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} - \frac{ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} - \frac{2a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} + \frac{2a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} + \frac{2a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} + \frac{6a^{2}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{2a^{3}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} + \frac{2a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)} - \frac{4a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)} - \frac{4ax(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{2a(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} + \frac{2a{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-3a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} + \frac{a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} + \frac{2a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} + \frac{2ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} - \frac{3a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} + \frac{a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} - \frac{a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} + \frac{2a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} + \frac{2ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} - \frac{ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} - \frac{2a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} + \frac{2a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} + \frac{2a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} + \frac{6a^{2}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{2a^{3}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} + \frac{2a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)} - \frac{4a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)} - \frac{4ax(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{2a(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)} + \frac{2a{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)}\right)}{dx}\\=&-3(\frac{-2(0 - 1)}{(b - x)^{3}})a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{3a^{2}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}} - \frac{3a^{2}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}} + (\frac{-2(0 - 1)}{(b - x)^{3}})a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{a^{3}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}} + \frac{a^{3}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}} - \frac{(\frac{-(0 - 1)}{(b - x)^{2}})a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} - \frac{a^{3}b*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{a^{3}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)x} - \frac{a^{3}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)x} + \frac{2(\frac{-(0 - 1)}{(b - x)^{2}})a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} + \frac{2a^{2}b*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{2a^{2}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)x} + \frac{2a^{2}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)x} + 2(\frac{-2(0 - 1)}{(b - x)^{3}})ab(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{2ab((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}} + \frac{2ab(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}} - \frac{(\frac{-(0 - 1)}{(b - x)^{2}})ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} - \frac{ab*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{ab({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)x} - \frac{ab{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)x} - \frac{3a^{2}b*-2{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} - \frac{3a^{2}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x^{2}} - \frac{3a^{2}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x^{2}} + \frac{a^{3}b*-2{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} + \frac{a^{3}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x^{2}} + \frac{a^{3}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x^{2}} - \frac{(\frac{-(0 - 1)}{(b - x)^{2}})a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{x} - \frac{a^{3}b*-(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} - \frac{a^{3}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)x} - \frac{a^{3}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)x} + \frac{2(\frac{-(0 - 1)}{(b - x)^{2}})a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{x} + \frac{2a^{2}b*-(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} + \frac{2a^{2}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)x} + \frac{2a^{2}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)x} + \frac{2ab*-2{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} + \frac{2ab({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x^{2}} + \frac{2ab{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x^{2}} - \frac{(\frac{-(0 - 1)}{(b - x)^{2}})ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{x} - \frac{ab*-(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} - \frac{ab((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)x} - \frac{ab(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)x} - \frac{2a^{3}*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} - \frac{2a^{3}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x} - \frac{2a^{3}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x} + \frac{2a^{2}*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} + \frac{2a^{2}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x} + \frac{2a^{2}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x} + 2(\frac{-(0 - 1)}{(b - x)^{2}})a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{2a^{3}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)} + \frac{2a^{3}(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)} + 6(\frac{-2(0 - 1)}{(b - x)^{3}})a^{2}x(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{6a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} + \frac{6a^{2}x((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}} + \frac{6a^{2}x(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}} - 2(\frac{-2(0 - 1)}{(b - x)^{3}})a^{3}x(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{2a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{2a^{3}x((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}} - \frac{2a^{3}x(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}} + 2(\frac{-(0 - 1)}{(b - x)^{2}})a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)} + \frac{2a^{3}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)} + \frac{2a^{3}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)} - 4(\frac{-(0 - 1)}{(b - x)^{2}})a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)} - \frac{4a^{2}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)} - \frac{4a^{2}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)} - 4(\frac{-2(0 - 1)}{(b - x)^{3}})ax(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{4a(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{4ax((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}} - \frac{4ax(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}} - 2(\frac{-(0 - 1)}{(b - x)^{2}})a(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{2a((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)} - \frac{2a(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)} + 2(\frac{-(0 - 1)}{(b - x)^{2}})a{x}^{(a - 1)}(b - x)^{(a - 1)} + \frac{2a({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)} + \frac{2a{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)}\\=&\frac{-11a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{6a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{5a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{7a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} - \frac{a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{7a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{2a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{2a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} - \frac{7a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} - \frac{8a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{8a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} + \frac{6ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{3ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{3ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{3ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} + \frac{11a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} - \frac{6a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} + \frac{5a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} - \frac{7a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} + \frac{a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} - \frac{a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} - \frac{6ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} + \frac{3ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} + \frac{6a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} - \frac{2a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} + \frac{2a^{4}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} - \frac{4a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} - \frac{4a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} + \frac{2a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} + \frac{8a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{4a^{4}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} + \frac{4a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} - \frac{8a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} + \frac{22a^{2}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{2a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{12a^{3}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{10a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}} - \frac{14a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}} + \frac{2a^{4}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{2a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}} + \frac{4a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} - \frac{12ax(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{6a(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} + \frac{6a{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-11a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{6a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{5a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{7a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} - \frac{a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{7a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{2a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{2a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} - \frac{7a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} - \frac{8a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{8a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} + \frac{6ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{3ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{3ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{3ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} + \frac{11a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} - \frac{6a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} + \frac{5a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} - \frac{7a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} + \frac{a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} - \frac{a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} - \frac{6ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} + \frac{3ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} + \frac{6a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} - \frac{2a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} + \frac{2a^{4}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} - \frac{4a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} - \frac{4a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} + \frac{2a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x} + \frac{8a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{4a^{4}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} + \frac{4a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} - \frac{8a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} + \frac{22a^{2}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{2a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} - \frac{12a^{3}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{10a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}} - \frac{14a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}} + \frac{2a^{4}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{2a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}} + \frac{4a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x} - \frac{12ax(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{6a(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}} + \frac{6a{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}}\right)}{dx}\\=&-11(\frac{-3(0 - 1)}{(b - x)^{4}})a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{11a^{2}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{3}} - \frac{11a^{2}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{3}} + 6(\frac{-3(0 - 1)}{(b - x)^{4}})a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{6a^{3}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{3}} + \frac{6a^{3}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{3}} - \frac{5(\frac{-2(0 - 1)}{(b - x)^{3}})a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} - \frac{5a^{3}b*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x^{2}} - \frac{5a^{3}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)^{2}x} - \frac{5a^{3}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)^{2}x} + \frac{7(\frac{-2(0 - 1)}{(b - x)^{3}})a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} + \frac{7a^{2}b*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x^{2}} + \frac{7a^{2}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{7a^{2}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)^{2}x} - (\frac{-3(0 - 1)}{(b - x)^{4}})a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{a^{4}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{3}} - \frac{a^{4}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{3}} + \frac{(\frac{-2(0 - 1)}{(b - x)^{3}})a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} + \frac{a^{4}b*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x^{2}} + \frac{a^{4}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{a^{4}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)^{2}x} + \frac{7(\frac{-(0 - 1)}{(b - x)^{2}})a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} + \frac{7a^{3}b*-2{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{3}} + \frac{7a^{3}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{7a^{3}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)x^{2}} - \frac{2(\frac{-(0 - 1)}{(b - x)^{2}})a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} - \frac{2a^{4}b*-2{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{3}} - \frac{2a^{4}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{2a^{4}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)x^{2}} + \frac{2(\frac{-2(0 - 1)}{(b - x)^{3}})a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{x} + \frac{2a^{4}b*-(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x^{2}} + \frac{2a^{4}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}x} + \frac{2a^{4}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}x} - \frac{7(\frac{-2(0 - 1)}{(b - x)^{3}})a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{x} - \frac{7a^{3}b*-(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x^{2}} - \frac{7a^{3}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}x} - \frac{7a^{3}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}x} - \frac{8(\frac{-(0 - 1)}{(b - x)^{2}})a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} - \frac{8a^{2}b*-2{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{3}} - \frac{8a^{2}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{8a^{2}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)x^{2}} + \frac{8(\frac{-2(0 - 1)}{(b - x)^{3}})a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{x} + \frac{8a^{2}b*-(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x^{2}} + \frac{8a^{2}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}x} + \frac{8a^{2}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}x} + 6(\frac{-3(0 - 1)}{(b - x)^{4}})ab(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{6ab((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{3}} + \frac{6ab(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{3}} - \frac{3(\frac{-2(0 - 1)}{(b - x)^{3}})ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} - \frac{3ab*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x^{2}} - \frac{3ab({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)^{2}x} - \frac{3ab{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)^{2}x} + \frac{3(\frac{-(0 - 1)}{(b - x)^{2}})ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{2}} + \frac{3ab*-2{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{3}} + \frac{3ab({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{3ab{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)x^{2}} - \frac{3(\frac{-2(0 - 1)}{(b - x)^{3}})ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{x} - \frac{3ab*-(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x^{2}} - \frac{3ab((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}x} - \frac{3ab(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}x} + \frac{11a^{2}b*-3{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{4}} + \frac{11a^{2}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x^{3}} + \frac{11a^{2}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x^{3}} - \frac{6a^{3}b*-3{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{4}} - \frac{6a^{3}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x^{3}} - \frac{6a^{3}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x^{3}} + \frac{5(\frac{-(0 - 1)}{(b - x)^{2}})a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{x^{2}} + \frac{5a^{3}b*-2(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{3}} + \frac{5a^{3}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)x^{2}} + \frac{5a^{3}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)x^{2}} - \frac{7(\frac{-(0 - 1)}{(b - x)^{2}})a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{x^{2}} - \frac{7a^{2}b*-2(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{3}} - \frac{7a^{2}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)x^{2}} - \frac{7a^{2}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)x^{2}} + \frac{a^{4}b*-3{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{4}} + \frac{a^{4}b({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x^{3}} + \frac{a^{4}b{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x^{3}} - \frac{(\frac{-(0 - 1)}{(b - x)^{2}})a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{x^{2}} - \frac{a^{4}b*-2(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{3}} - \frac{a^{4}b((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)x^{2}} - \frac{a^{4}b(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)x^{2}} - \frac{6ab*-3{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{4}} - \frac{6ab({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x^{3}} - \frac{6ab{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x^{3}} + \frac{3(\frac{-(0 - 1)}{(b - x)^{2}})ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{x^{2}} + \frac{3ab*-2(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{3}} + \frac{3ab((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)x^{2}} + \frac{3ab(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)x^{2}} + \frac{6a^{3}*-2{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} + \frac{6a^{3}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x^{2}} + \frac{6a^{3}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x^{2}} - \frac{2a^{4}*-2{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} - \frac{2a^{4}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x^{2}} - \frac{2a^{4}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x^{2}} + \frac{2(\frac{-(0 - 1)}{(b - x)^{2}})a^{4}(b - x)^{(a - 1)}{x}^{(a - 1)}}{x} + \frac{2a^{4}*-(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} + \frac{2a^{4}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)x} + \frac{2a^{4}(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)x} - \frac{4(\frac{-(0 - 1)}{(b - x)^{2}})a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{x} - \frac{4a^{3}*-(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} - \frac{4a^{3}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)x} - \frac{4a^{3}(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)x} - \frac{4a^{2}*-2{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} - \frac{4a^{2}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{x^{2}} - \frac{4a^{2}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{x^{2}} + \frac{2(\frac{-(0 - 1)}{(b - x)^{2}})a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{x} + \frac{2a^{2}*-(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} + \frac{2a^{2}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)x} + \frac{2a^{2}(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)x} + 8(\frac{-2(0 - 1)}{(b - x)^{3}})a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{8a^{3}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}} + \frac{8a^{3}(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}} - 4(\frac{-2(0 - 1)}{(b - x)^{3}})a^{4}(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{4a^{4}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}} - \frac{4a^{4}(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}} + \frac{4(\frac{-(0 - 1)}{(b - x)^{2}})a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} + \frac{4a^{4}*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{4a^{4}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)x} + \frac{4a^{4}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)x} - \frac{8(\frac{-(0 - 1)}{(b - x)^{2}})a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} - \frac{8a^{3}*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{8a^{3}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)x} - \frac{8a^{3}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)x} + 22(\frac{-3(0 - 1)}{(b - x)^{4}})a^{2}x(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{22a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{22a^{2}x((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{3}} + \frac{22a^{2}x(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{3}} + 2(\frac{-2(0 - 1)}{(b - x)^{3}})a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{2a^{2}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}} + \frac{2a^{2}(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}} - 12(\frac{-3(0 - 1)}{(b - x)^{4}})a^{3}x(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{12a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{12a^{3}x((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{3}} - \frac{12a^{3}x(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{3}} + 10(\frac{-2(0 - 1)}{(b - x)^{3}})a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)} + \frac{10a^{3}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)^{2}} + \frac{10a^{3}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)^{2}} - 14(\frac{-2(0 - 1)}{(b - x)^{3}})a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)} - \frac{14a^{2}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)^{2}} - \frac{14a^{2}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)^{2}} + 2(\frac{-3(0 - 1)}{(b - x)^{4}})a^{4}x(b - x)^{(a - 1)}{x}^{(a - 1)} + \frac{2a^{4}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{2a^{4}x((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{3}} + \frac{2a^{4}x(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{3}} - 2(\frac{-2(0 - 1)}{(b - x)^{3}})a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)} - \frac{2a^{4}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)^{2}} - \frac{2a^{4}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)^{2}} + \frac{4(\frac{-(0 - 1)}{(b - x)^{2}})a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x} + \frac{4a^{2}*-{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{4a^{2}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)x} + \frac{4a^{2}{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)x} - 12(\frac{-3(0 - 1)}{(b - x)^{4}})ax(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{12a(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{12ax((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{3}} - \frac{12ax(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{3}} - 6(\frac{-2(0 - 1)}{(b - x)^{3}})a(b - x)^{(a - 1)}{x}^{(a - 1)} - \frac{6a((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)})){x}^{(a - 1)}}{(b - x)^{2}} - \frac{6a(b - x)^{(a - 1)}({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))}{(b - x)^{2}} + 6(\frac{-2(0 - 1)}{(b - x)^{3}})a{x}^{(a - 1)}(b - x)^{(a - 1)} + \frac{6a({x}^{(a - 1)}((0 + 0)ln(x) + \frac{(a - 1)(1)}{(x)}))(b - x)^{(a - 1)}}{(b - x)^{2}} + \frac{6a{x}^{(a - 1)}((b - x)^{(a - 1)}((0 + 0)ln(b - x) + \frac{(a - 1)(0 - 1)}{(b - x)}))}{(b - x)^{2}}\\=&\frac{-50a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{4}} + \frac{35a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{4}} - \frac{27a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{3}x} + \frac{31a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{3}x} - \frac{10a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{4}} + \frac{9a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{3}x} + \frac{39a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x^{2}} - \frac{18a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x^{2}} + \frac{19a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}x} - \frac{41a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}x} - \frac{36a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x^{2}} + \frac{37a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}x} + \frac{a^{5}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{4}} - \frac{a^{5}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{3}x} + \frac{3a^{5}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x^{2}} - \frac{3a^{5}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}x} - \frac{41a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{3}} + \frac{19a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{3}} - \frac{18a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x^{2}} + \frac{39a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x^{2}} - \frac{3a^{5}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{3}} + \frac{3a^{5}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x^{2}} + \frac{37a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{3}} - \frac{36a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x^{2}} + \frac{24ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{4}} - \frac{12ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{3}x} + \frac{12ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x^{2}} - \frac{12ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}x} - \frac{12ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{3}} + \frac{12ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x^{2}} - \frac{50a^{2}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{4}} + \frac{35a^{3}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{4}} - \frac{27a^{3}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{3}} + \frac{31a^{2}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{3}} - \frac{10a^{4}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{4}} + \frac{9a^{4}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{3}} + \frac{a^{5}b{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{4}} - \frac{a^{5}b(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{3}} + \frac{24ab{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{4}} - \frac{12ab(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{3}} - \frac{22a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} + \frac{12a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} - \frac{10a^{4}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} + \frac{14a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} - \frac{2a^{5}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} + \frac{2a^{5}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} + \frac{20a^{4}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} - \frac{6a^{5}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} + \frac{6a^{5}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{22a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} - \frac{22a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} + \frac{26a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{12a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{x^{3}} - \frac{6a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)x^{2}} + \frac{8a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{2}x} - \frac{10a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)x^{2}} + \frac{34a^{3}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{30a^{4}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{28a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} - \frac{38a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{6a^{5}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{6a^{5}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{100a^{2}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{4}} + \frac{14a^{2}(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} - \frac{70a^{3}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{4}} + \frac{54a^{3}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{3}} - \frac{62a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{3}} + \frac{16a^{2}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{2}x} + \frac{20a^{4}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{4}} - \frac{18a^{4}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{3}} - \frac{2a^{5}x(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{4}} + \frac{2a^{5}{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{3}} - \frac{48ax(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{4}} - \frac{24a(b - x)^{(a - 1)}{x}^{(a - 1)}}{(b - x)^{3}} + \frac{24a{x}^{(a - 1)}(b - x)^{(a - 1)}}{(b - x)^{3}}\\ \end{split}\end{equation} \]



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。