Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{{x}^{cos(x)}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{{x}^{cos(x)}}\right)}{dx}\\=&e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))\\=&-{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x) + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x) + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x}\right)}{dx}\\=&-({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin(x) - {x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin(x) - \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)}{(x)} - {x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos(x) + \frac{-{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{2}} + \frac{({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos(x)}{x} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos(x)}{x} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}*-sin(x)}{x}\\=&{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x) - \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x} + {x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x) - \frac{2{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x} - \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)}{x} - {x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos(x) - \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{2}} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{2}} + \frac{{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x) - \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x} + {x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x) - \frac{2{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x} - \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)}{x} - {x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos(x) - \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{2}} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{2}} + \frac{{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{2}}\right)}{dx}\\=&({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x) + {x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln^{2}(x)sin^{2}(x) + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}*2ln(x)sin^{2}(x)}{(x)} + {x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)*2sin(x)cos(x) - \frac{2*-{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{2}} - \frac{2({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x} - \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin(x)cos(x)}{x} - \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)cos(x)}{x(x)} - \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos(x)cos(x)}{x} - \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)*-sin(x)}{x} + ({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x) + {x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln^{2}(x)sin^{2}(x) + \frac{{x}^{(2cos(x))}e^{{x}^{cos(x)}}*2ln(x)sin^{2}(x)}{(x)} + {x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)*2sin(x)cos(x) - \frac{2*-{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{2}} - \frac{2({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x} - \frac{2{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin(x)cos(x)}{x} - \frac{2{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin(x)cos(x)}{x(x)} - \frac{2{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)cos(x)cos(x)}{x} - \frac{2{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)*-sin(x)}{x} - \frac{2*-{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)}{x^{2}} - \frac{2({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}sin(x)}{x} - \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))sin(x)}{x} - \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x} - ({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)cos(x) - {x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)cos(x) - \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{(x)} - {x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)*-sin(x) - \frac{-2{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{3}} - \frac{({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos(x)}{x^{2}} - \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos(x)}{x^{2}} - \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}*-sin(x)}{x^{2}} + \frac{-2{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{3}} + \frac{({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos^{2}(x)}{x^{2}} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos^{2}(x)}{x^{2}} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}*-2cos(x)sin(x)}{x^{2}} + \frac{-2{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{3}} + \frac{({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos^{2}(x)}{x^{2}} + \frac{{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos^{2}(x)}{x^{2}} + \frac{{x}^{(2cos(x))}e^{{x}^{cos(x)}}*-2cos(x)sin(x)}{x^{2}}\\=&3{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin(x)cos(x) + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x} + 3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin(x)cos(x) + \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{2}} + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{2}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{2}} - \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{2}} - \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{2}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos^{2}(x)}{x} - 3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x) - {x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x) + \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x} - \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{2}} + \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)}{x} - \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{2}} - \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)cos^{2}(x)}{x} + \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)}{x} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)}{x^{2}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x} - {x}^{cos(x)}e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x) + {x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x) + \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{3}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{3}} - \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{3}} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{3}} + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{3}} + \frac{{x}^{(3cos(x))}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 3{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin(x)cos(x) + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x} + 3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin(x)cos(x) + \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{2}} + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{2}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{2}} - \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{2}} - \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{2}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos^{2}(x)}{x} - 3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x) - {x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x) + \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x} - \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{2}} + \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)}{x} - \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{2}} - \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)cos^{2}(x)}{x} + \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)}{x} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)}{x^{2}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x} - {x}^{cos(x)}e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x) + {x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x) + \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{3}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{3}} - \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{3}} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{3}} + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{3}} + \frac{{x}^{(3cos(x))}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{3}}\right)}{dx}\\=&3({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln^{2}(x)sin(x)cos(x) + 3{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln^{2}(x)sin(x)cos(x) + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}*2ln(x)sin(x)cos(x)}{(x)} + 3{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)cos(x)cos(x) + 3{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin(x)*-sin(x) + \frac{3*-{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x^{2}} + \frac{3({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln^{2}(x)sin^{2}(x)cos(x)}{x} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}*2ln(x)sin^{2}(x)cos(x)}{x(x)} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)*2sin(x)cos(x)cos(x)}{x} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)*-sin(x)}{x} + 3({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln^{2}(x)sin(x)cos(x) + 3{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln^{2}(x)sin(x)cos(x) + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}*2ln(x)sin(x)cos(x)}{(x)} + 3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)cos(x)cos(x) + 3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin(x)*-sin(x) + \frac{9*-{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x^{2}} + \frac{9({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x} + \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln^{2}(x)sin^{2}(x)cos(x)}{x} + \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}*2ln(x)sin^{2}(x)cos(x)}{x(x)} + \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)*2sin(x)cos(x)cos(x)}{x} + \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)*-sin(x)}{x} + \frac{3*-2{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{3}} + \frac{3({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{2}} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin(x)cos(x)}{x^{2}} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{2}(x)} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos(x)cos(x)}{x^{2}} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)*-sin(x)}{x^{2}} + \frac{3*-2{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{3}} + \frac{3({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{2}} + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin(x)cos(x)}{x^{2}} + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{2}(x)} + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)cos(x)cos(x)}{x^{2}} + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)*-sin(x)}{x^{2}} - \frac{3*-2{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{3}} - \frac{3({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{2}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin(x)cos^{2}(x)}{x^{2}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)cos^{2}(x)}{x^{2}(x)} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos(x)cos^{2}(x)}{x^{2}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)*-2cos(x)sin(x)}{x^{2}} - \frac{9*-2{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{3}} - \frac{9({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{2}} - \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin(x)cos^{2}(x)}{x^{2}} - \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin(x)cos^{2}(x)}{x^{2}(x)} - \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)cos(x)cos^{2}(x)}{x^{2}} - \frac{9{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)*-2cos(x)sin(x)}{x^{2}} - \frac{6*-2{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{3}} - \frac{6({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{2}} - \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))sin(x)cos(x)}{x^{2}} - \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)cos(x)}{x^{2}} - \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)*-sin(x)}{x^{2}} - \frac{3*-{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos^{2}(x)}{x^{2}} - \frac{3({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)cos^{2}(x)}{x} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)cos^{2}(x)}{x} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{2}(x)}{x(x)} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)*-2cos(x)sin(x)}{x} - 3({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x) - 3{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln^{3}(x)sin^{3}(x) - \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}*3ln^{2}(x)sin^{3}(x)}{(x)} - 3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)*3sin^{2}(x)cos(x) - ({x}^{(3cos(x))}((3*-sin(x))ln(x) + \frac{(3cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x) - {x}^{(3cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln^{3}(x)sin^{3}(x) - \frac{{x}^{(3cos(x))}e^{{x}^{cos(x)}}*3ln^{2}(x)sin^{3}(x)}{(x)} - {x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)*3sin^{2}(x)cos(x) + \frac{3*-{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x^{2}} + \frac{3({x}^{(3cos(x))}((3*-sin(x))ln(x) + \frac{(3cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x} + \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln^{2}(x)sin^{2}(x)cos(x)}{x} + \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}*2ln(x)sin^{2}(x)cos(x)}{x(x)} + \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)*2sin(x)cos(x)cos(x)}{x} + \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)*-sin(x)}{x} - \frac{3*-2{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{3}} - \frac{3({x}^{(3cos(x))}((3*-sin(x))ln(x) + \frac{(3cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{2}} - \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin(x)cos^{2}(x)}{x^{2}} - \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}sin(x)cos^{2}(x)}{x^{2}(x)} - \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln(x)cos(x)cos^{2}(x)}{x^{2}} - \frac{3{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)*-2cos(x)sin(x)}{x^{2}} + \frac{6*-{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)}{x^{2}} + \frac{6({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin^{2}(x)}{x} + \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin^{2}(x)}{x} + \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}sin^{2}(x)}{x(x)} + \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)*2sin(x)cos(x)}{x} - \frac{6*-2{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{3}} - \frac{6({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{2}} - \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))sin(x)cos(x)}{x^{2}} - \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos(x)cos(x)}{x^{2}} - \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin(x)*-sin(x)}{x^{2}} - \frac{3*-{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)cos^{2}(x)}{x^{2}} - \frac{3({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)cos^{2}(x)}{x} - \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)cos^{2}(x)}{x} - \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{2}(x)}{x(x)} - \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)*-2cos(x)sin(x)}{x} + \frac{6*-{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)}{x^{2}} + \frac{6({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin^{2}(x)}{x} + \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin^{2}(x)}{x} + \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin^{2}(x)}{x(x)} + \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)*2sin(x)cos(x)}{x} + \frac{3*-2{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)}{x^{3}} + \frac{3({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}sin(x)}{x^{2}} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))sin(x)}{x^{2}} + \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{2}} - \frac{3*-{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{2}} - \frac{3({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos(x)}{x} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos(x)}{x} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}*-sin(x)}{x} - ({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x) - {x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln^{3}(x)sin^{3}(x) - \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}*3ln^{2}(x)sin^{3}(x)}{(x)} - {x}^{cos(x)}e^{{x}^{cos(x)}}ln^{3}(x)*3sin^{2}(x)cos(x) + ({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}ln(x)sin(x) + {x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin(x) + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)}{(x)} + {x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos(x) + \frac{2*-3{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{4}} + \frac{2({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos(x)}{x^{3}} + \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos(x)}{x^{3}} + \frac{2{x}^{cos(x)}e^{{x}^{cos(x)}}*-sin(x)}{x^{3}} - \frac{3*-3{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{4}} - \frac{3({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos^{2}(x)}{x^{3}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos^{2}(x)}{x^{3}} - \frac{3{x}^{cos(x)}e^{{x}^{cos(x)}}*-2cos(x)sin(x)}{x^{3}} - \frac{3*-3{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{4}} - \frac{3({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos^{2}(x)}{x^{3}} - \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos^{2}(x)}{x^{3}} - \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}*-2cos(x)sin(x)}{x^{3}} + \frac{-3{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{4}} + \frac{({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos^{3}(x)}{x^{3}} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos^{3}(x)}{x^{3}} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}*-3cos^{2}(x)sin(x)}{x^{3}} + \frac{3*-3{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{4}} + \frac{3({x}^{(2cos(x))}((2*-sin(x))ln(x) + \frac{(2cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos^{3}(x)}{x^{3}} + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos^{3}(x)}{x^{3}} + \frac{3{x}^{(2cos(x))}e^{{x}^{cos(x)}}*-3cos^{2}(x)sin(x)}{x^{3}} + \frac{-3{x}^{(3cos(x))}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{4}} + \frac{({x}^{(3cos(x))}((3*-sin(x))ln(x) + \frac{(3cos(x))(1)}{(x)}))e^{{x}^{cos(x)}}cos^{3}(x)}{x^{3}} + \frac{{x}^{(3cos(x))}e^{{x}^{cos(x)}}({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos^{3}(x)}{x^{3}} + \frac{{x}^{(3cos(x))}e^{{x}^{cos(x)}}*-3cos^{2}(x)sin(x)}{x^{3}}\\=&-6{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{3}(x)sin^{2}(x)cos(x) + \frac{12{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin(x)cos^{2}(x)}{x} - 18{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)sin^{2}(x)cos(x) + \frac{36{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin(x)cos^{2}(x)}{x} + \frac{28{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x} + 3{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)cos^{2}(x) - \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x^{2}} - \frac{4{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x)cos(x)}{x} + \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos^{2}(x)}{x^{2}} - \frac{28{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x)cos(x)}{x} + \frac{42{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos^{2}(x)}{x^{2}} + \frac{24{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)cos(x)}{x^{2}} - 6{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)sin^{2}(x)cos(x) + \frac{12{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin(x)cos^{2}(x)}{x} + \frac{28{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x} + 3{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)cos^{2}(x) - \frac{18{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x^{2}} - \frac{24{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x)cos(x)}{x} + \frac{36{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos^{2}(x)}{x^{2}} + \frac{72{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)cos(x)}{x^{2}} - \frac{8{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{3}} + \frac{12{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{3}} + \frac{36{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{3}} + \frac{24{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{3}} + \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos^{2}(x)}{x^{2}} + \frac{24{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)cos(x)}{x^{2}} - \frac{8{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos(x)}{x^{3}} - \frac{6{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos(x)}{x^{2}} + \frac{12{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{2}(x)}{x^{3}} + \frac{24{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin(x)cos(x)}{x^{3}} + \frac{6{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)cos^{2}(x)}{x^{2}} - \frac{4{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{3}(x)}{x^{3}} - \frac{28{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{3}(x)}{x^{3}} - \frac{12{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)cos^{2}(x)}{x^{3}} - \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos^{3}(x)}{x^{2}} - \frac{24{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{3}(x)}{x^{3}} - \frac{36{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin(x)cos^{2}(x)}{x^{3}} - \frac{18{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)cos^{3}(x)}{x^{2}} - \frac{12{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{2}} - \frac{12{x}^{(3cos(x))}e^{{x}^{cos(x)}}sin(x)cos^{2}(x)}{x^{3}} - \frac{6{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln(x)cos^{3}(x)}{x^{2}} - \frac{4{x}^{(4cos(x))}e^{{x}^{cos(x)}}ln^{3}(x)sin^{3}(x)cos(x)}{x} + 7{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{4}(x)sin^{4}(x) + 6{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{4}(x)sin^{4}(x) + {x}^{(4cos(x))}e^{{x}^{cos(x)}}ln^{4}(x)sin^{4}(x) + \frac{6{x}^{(4cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x)cos^{2}(x)}{x^{2}} - \frac{4{x}^{(4cos(x))}e^{{x}^{cos(x)}}ln(x)sin(x)cos^{3}(x)}{x^{3}} - 4{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x) - \frac{36{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{3}(x)}{x} - \frac{12{x}^{(3cos(x))}e^{{x}^{cos(x)}}ln^{2}(x)sin^{3}(x)}{x} - \frac{12{x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)}{x^{2}} - \frac{12{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{2}} + \frac{12{x}^{(2cos(x))}e^{{x}^{cos(x)}}sin^{2}(x)}{x^{2}} - \frac{8{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)}{x^{3}} - \frac{12{x}^{(2cos(x))}e^{{x}^{cos(x)}}ln(x)sin^{2}(x)}{x^{2}} + \frac{12{x}^{cos(x)}e^{{x}^{cos(x)}}sin^{2}(x)}{x^{2}} + \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{2}} + {x}^{cos(x)}e^{{x}^{cos(x)}}ln^{4}(x)sin^{4}(x) - 4{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin^{2}(x) + {x}^{cos(x)}e^{{x}^{cos(x)}}ln(x)cos(x) - \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}cos(x)}{x^{4}} + \frac{11{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{4}} - \frac{12{x}^{cos(x)}e^{{x}^{cos(x)}}ln^{2}(x)sin^{3}(x)}{x} + \frac{11{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{2}(x)}{x^{4}} - \frac{6{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{4}} - \frac{18{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{4}} - \frac{6{x}^{(3cos(x))}e^{{x}^{cos(x)}}cos^{3}(x)}{x^{4}} + \frac{{x}^{cos(x)}e^{{x}^{cos(x)}}cos^{4}(x)}{x^{4}} + \frac{7{x}^{(2cos(x))}e^{{x}^{cos(x)}}cos^{4}(x)}{x^{4}} + \frac{6{x}^{(3cos(x))}e^{{x}^{cos(x)}}cos^{4}(x)}{x^{4}} + \frac{4{x}^{cos(x)}e^{{x}^{cos(x)}}sin(x)}{x} + \frac{{x}^{(4cos(x))}e^{{x}^{cos(x)}}cos^{4}(x)}{x^{4}}\\ \end{split}\end{equation} \]



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。