Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {e^{x}}^{(xe^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e^{x}}^{(xe^{x})}\right)}{dx}\\=&({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))\\=&{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}\right)}{dx}\\=&({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x}ln(e^{x}) + {e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + \frac{{e^{x}}^{(xe^{x})}e^{x}e^{x}}{(e^{x})} + {e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + \frac{x{e^{x}}^{(xe^{x})}e^{x}e^{x}}{(e^{x})} + {e^{x}}^{(xe^{x})}e^{x} + x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x} + x{e^{x}}^{(xe^{x})}e^{x}\\=&{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 2x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 2x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 2{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + 2{e^{x}}^{(xe^{x})}e^{x} + x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 2x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + 2x{e^{x}}^{(xe^{x})}e^{x} + x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 2x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 2x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 2{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + 2{e^{x}}^{(xe^{x})}e^{x} + x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 2x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + 2x{e^{x}}^{(xe^{x})}e^{x} + x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}\right)}{dx}\\=&({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln^{2}(e^{x}) + {e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln^{2}(e^{x}) + \frac{{e^{x}}^{(xe^{x})}e^{{x}*{2}}*2ln(e^{x})e^{x}}{(e^{x})} + 2{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 2x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln^{2}(e^{x}) + 2x{e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln^{2}(e^{x}) + \frac{2x{e^{x}}^{(xe^{x})}e^{{x}*{2}}*2ln(e^{x})e^{x}}{(e^{x})} + 2{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 2x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln(e^{x}) + 2x{e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln(e^{x}) + \frac{2x{e^{x}}^{(xe^{x})}e^{{x}*{2}}e^{x}}{(e^{x})} + 2({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x}ln(e^{x}) + 2{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + \frac{2{e^{x}}^{(xe^{x})}e^{x}e^{x}}{(e^{x})} + 2({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x} + 2{e^{x}}^{(xe^{x})}e^{x} + 2x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + x^{2}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln^{2}(e^{x}) + x^{2}{e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln^{2}(e^{x}) + \frac{x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}*2ln(e^{x})e^{x}}{(e^{x})} + 2*2x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 2x^{2}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln(e^{x}) + 2x^{2}{e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln(e^{x}) + \frac{2x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}e^{x}}{(e^{x})} + {e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + \frac{x{e^{x}}^{(xe^{x})}e^{x}e^{x}}{(e^{x})} + 2{e^{x}}^{(xe^{x})}e^{x} + 2x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x} + 2x{e^{x}}^{(xe^{x})}e^{x} + 2x{e^{x}}^{(xe^{x})}e^{{x}*{2}} + x^{2}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}} + x^{2}{e^{x}}^{(xe^{x})}*2e^{x}e^{x}\\=&{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 3x{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 3x{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 6{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 6{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 6x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 9x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 18x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln(e^{x}) + 3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 3{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + 6{e^{x}}^{(xe^{x})}e^{x} + x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 3x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 9x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + 3x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln(e^{x}) + 6x{e^{x}}^{(xe^{x})}e^{{x}*{2}} + 6x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}} + 3x{e^{x}}^{(xe^{x})}e^{x} + x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 3x{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 3x{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 6{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 6{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 6x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 9x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 18x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln(e^{x}) + 3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 3{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + 6{e^{x}}^{(xe^{x})}e^{x} + x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 3x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 9x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + 3x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln(e^{x}) + 6x{e^{x}}^{(xe^{x})}e^{{x}*{2}} + 6x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}} + 3x{e^{x}}^{(xe^{x})}e^{x} + x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}\right)}{dx}\\=&({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{3}}ln^{3}(e^{x}) + {e^{x}}^{(xe^{x})}*3e^{{x}*{2}}e^{x}ln^{3}(e^{x}) + \frac{{e^{x}}^{(xe^{x})}e^{{x}*{3}}*3ln^{2}(e^{x})e^{x}}{(e^{x})} + 3{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 3x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{3}}ln^{3}(e^{x}) + 3x{e^{x}}^{(xe^{x})}*3e^{{x}*{2}}e^{x}ln^{3}(e^{x}) + \frac{3x{e^{x}}^{(xe^{x})}e^{{x}*{3}}*3ln^{2}(e^{x})e^{x}}{(e^{x})} + 3{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 3x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{3}}ln^{2}(e^{x}) + 3x{e^{x}}^{(xe^{x})}*3e^{{x}*{2}}e^{x}ln^{2}(e^{x}) + \frac{3x{e^{x}}^{(xe^{x})}e^{{x}*{3}}*2ln(e^{x})e^{x}}{(e^{x})} + 6({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln^{2}(e^{x}) + 6{e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln^{2}(e^{x}) + \frac{6{e^{x}}^{(xe^{x})}e^{{x}*{2}}*2ln(e^{x})e^{x}}{(e^{x})} + 6({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln(e^{x}) + 6{e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln(e^{x}) + \frac{6{e^{x}}^{(xe^{x})}e^{{x}*{2}}e^{x}}{(e^{x})} + 3*2x{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 3x^{2}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{3}}ln^{3}(e^{x}) + 3x^{2}{e^{x}}^{(xe^{x})}*3e^{{x}*{2}}e^{x}ln^{3}(e^{x}) + \frac{3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}*3ln^{2}(e^{x})e^{x}}{(e^{x})} + 6*2x{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 6x^{2}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{3}}ln^{2}(e^{x}) + 6x^{2}{e^{x}}^{(xe^{x})}*3e^{{x}*{2}}e^{x}ln^{2}(e^{x}) + \frac{6x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}*2ln(e^{x})e^{x}}{(e^{x})} + 9{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 9x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln^{2}(e^{x}) + 9x{e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln^{2}(e^{x}) + \frac{9x{e^{x}}^{(xe^{x})}e^{{x}*{2}}*2ln(e^{x})e^{x}}{(e^{x})} + 18{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 18x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln(e^{x}) + 18x{e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln(e^{x}) + \frac{18x{e^{x}}^{(xe^{x})}e^{{x}*{2}}e^{x}}{(e^{x})} + 3*2x{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln(e^{x}) + 3x^{2}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{3}}ln(e^{x}) + 3x^{2}{e^{x}}^{(xe^{x})}*3e^{{x}*{2}}e^{x}ln(e^{x}) + \frac{3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}e^{x}}{(e^{x})} + 3*2x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 3x^{2}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln^{2}(e^{x}) + 3x^{2}{e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln^{2}(e^{x}) + \frac{3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}*2ln(e^{x})e^{x}}{(e^{x})} + 3({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x}ln(e^{x}) + 3{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + \frac{3{e^{x}}^{(xe^{x})}e^{x}e^{x}}{(e^{x})} + 6({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x} + 6{e^{x}}^{(xe^{x})}e^{x} + 3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + x^{3}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{3}}ln^{3}(e^{x}) + x^{3}{e^{x}}^{(xe^{x})}*3e^{{x}*{2}}e^{x}ln^{3}(e^{x}) + \frac{x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}*3ln^{2}(e^{x})e^{x}}{(e^{x})} + 3*3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 3x^{3}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{3}}ln^{2}(e^{x}) + 3x^{3}{e^{x}}^{(xe^{x})}*3e^{{x}*{2}}e^{x}ln^{2}(e^{x}) + \frac{3x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}*2ln(e^{x})e^{x}}{(e^{x})} + 9*2x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 9x^{2}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}}ln(e^{x}) + 9x^{2}{e^{x}}^{(xe^{x})}*2e^{x}e^{x}ln(e^{x}) + \frac{9x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}e^{x}}{(e^{x})} + {e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + \frac{x{e^{x}}^{(xe^{x})}e^{x}e^{x}}{(e^{x})} + 3*3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln(e^{x}) + 3x^{3}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{3}}ln(e^{x}) + 3x^{3}{e^{x}}^{(xe^{x})}*3e^{{x}*{2}}e^{x}ln(e^{x}) + \frac{3x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}e^{x}}{(e^{x})} + 6{e^{x}}^{(xe^{x})}e^{{x}*{2}} + 6x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}} + 6x{e^{x}}^{(xe^{x})}*2e^{x}e^{x} + 6*2x{e^{x}}^{(xe^{x})}e^{{x}*{2}} + 6x^{2}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{2}} + 6x^{2}{e^{x}}^{(xe^{x})}*2e^{x}e^{x} + 3{e^{x}}^{(xe^{x})}e^{x} + 3x({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{x} + 3x{e^{x}}^{(xe^{x})}e^{x} + 3x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}} + x^{3}({e^{x}}^{(xe^{x})}((e^{x} + xe^{x})ln(e^{x}) + \frac{(xe^{x})(e^{x})}{(e^{x})}))e^{{x}*{3}} + x^{3}{e^{x}}^{(xe^{x})}*3e^{{x}*{2}}e^{x}\\=&{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{4}(e^{x}) + 4x{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{4}(e^{x}) + 4x{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{3}(e^{x}) + 12{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 12{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 6x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{4}(e^{x}) + 12x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{3}(e^{x}) + 30x{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 60x{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 6x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{2}(e^{x}) + 24x{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln(e^{x}) + 24{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 48{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 4{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + 4x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{4}(e^{x}) + 12x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{3}(e^{x}) + 24x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 72x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 12x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{2}(e^{x}) + 60x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln(e^{x}) + 28x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 84x{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 7x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln^{2}(e^{x}) + 4x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln(e^{x}) + 28x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}}ln(e^{x}) + 6x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{3}(e^{x}) + 24x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln^{2}(e^{x}) + 12{e^{x}}^{(xe^{x})}e^{{x}*{2}} + 12{e^{x}}^{(xe^{x})}e^{x} + x^{4}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{4}(e^{x}) + 4x^{4}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{3}(e^{x}) + 30x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}}ln(e^{x}) + x{e^{x}}^{(xe^{x})}e^{x}ln(e^{x}) + 6x^{4}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln^{2}(e^{x}) + 4x^{4}{e^{x}}^{(xe^{x})}e^{{x}*{4}}ln(e^{x}) + 24x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{2}} + 12x^{2}{e^{x}}^{(xe^{x})}e^{{x}*{3}} + 4x{e^{x}}^{(xe^{x})}e^{x} + 48x{e^{x}}^{(xe^{x})}e^{{x}*{2}} + 12x^{3}{e^{x}}^{(xe^{x})}e^{{x}*{3}} + x^{4}{e^{x}}^{(xe^{x})}e^{{x}*{4}}\\ \end{split}\end{equation} \]



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。