There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({n}^{2} - 9.4n + 50.09 - \frac{131.6}{n} + {(\frac{14}{n})}^{2})(n - 4.7 + \frac{14}{n})\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = n^{3} + 14n + \frac{196}{n} - 9.4n^{2} + 44.18n + 50.09n + \frac{701.26}{n} + \frac{618.52}{n} - \frac{1842.4}{n^{2}} + \frac{2744}{n^{3}} - \frac{921.2}{n^{2}} - 4.7n^{2} - 498.623\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( n^{3} + 14n + \frac{196}{n} - 9.4n^{2} + 44.18n + 50.09n + \frac{701.26}{n} + \frac{618.52}{n} - \frac{1842.4}{n^{2}} + \frac{2744}{n^{3}} - \frac{921.2}{n^{2}} - 4.7n^{2} - 498.623\right)}{dn}\\=&3n^{2} + 14 + \frac{196*-1}{n^{2}} - 9.4*2n + 44.18 + 50.09 + \frac{701.26*-1}{n^{2}} + \frac{618.52*-1}{n^{2}} - \frac{1842.4*-2}{n^{3}} + \frac{2744*-3}{n^{4}} - \frac{921.2*-2}{n^{3}} - 4.7*2n + 0\\=&3n^{2} - \frac{196}{n^{2}} - 18.8n - \frac{701.26}{n^{2}} - \frac{618.52}{n^{2}} + \frac{3684.8}{n^{3}} - \frac{8232}{n^{4}} + \frac{1842.4}{n^{3}} - 9.4n + 108.27\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!