There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({n}^{2} - 9.4n + 50.09 - \frac{131.6}{n} + {(\frac{14}{n})}^{2})(12{n}^{2} - 78n + 138)\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 12n^{4} - 78n^{3} - 112.8n^{3} - 1579.2n + 733.2n^{2} - 1297.2n - 3907.02n - \frac{15288}{n} - \frac{18160.8}{n} + 601.08n^{2} + 138n^{2} + \frac{27048}{n^{2}} + 19529.22\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 12n^{4} - 78n^{3} - 112.8n^{3} - 1579.2n + 733.2n^{2} - 1297.2n - 3907.02n - \frac{15288}{n} - \frac{18160.8}{n} + 601.08n^{2} + 138n^{2} + \frac{27048}{n^{2}} + 19529.22\right)}{dn}\\=&12*4n^{3} - 78*3n^{2} - 112.8*3n^{2} - 1579.2 + 733.2*2n - 1297.2 - 3907.02 - \frac{15288*-1}{n^{2}} - \frac{18160.8*-1}{n^{2}} + 601.08*2n + 138*2n + \frac{27048*-2}{n^{3}} + 0\\=&48n^{3} - 234n^{2} - 338.4n^{2} + 1466.4n + \frac{15288}{n^{2}} + \frac{18160.8}{n^{2}} + 1202.16n + 276n - \frac{54096}{n^{3}} - 6783.42\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!