There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{{((54 - 4{x}^{2}))}^{2}}{9}) + sqrt(\frac{(2{x}^{4} - 21{x}^{2} + 41)}{18})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{16}{9}x^{4} - 48x^{2} + 324) + sqrt(\frac{1}{9}x^{4} - \frac{7}{6}x^{2} + \frac{41}{18})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{16}{9}x^{4} - 48x^{2} + 324) + sqrt(\frac{1}{9}x^{4} - \frac{7}{6}x^{2} + \frac{41}{18})\right)}{dx}\\=&\frac{(\frac{16}{9}*4x^{3} - 48*2x + 0)*\frac{1}{2}}{(\frac{16}{9}x^{4} - 48x^{2} + 324)^{\frac{1}{2}}} + \frac{(\frac{1}{9}*4x^{3} - \frac{7}{6}*2x + 0)*\frac{1}{2}}{(\frac{1}{9}x^{4} - \frac{7}{6}x^{2} + \frac{41}{18})^{\frac{1}{2}}}\\=&\frac{32x^{3}}{9(\frac{16}{9}x^{4} - 48x^{2} + 324)^{\frac{1}{2}}} - \frac{48x}{(\frac{16}{9}x^{4} - 48x^{2} + 324)^{\frac{1}{2}}} + \frac{2x^{3}}{9(\frac{1}{9}x^{4} - \frac{7}{6}x^{2} + \frac{41}{18})^{\frac{1}{2}}} - \frac{7x}{6(\frac{1}{9}x^{4} - \frac{7}{6}x^{2} + \frac{41}{18})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!