There are 2 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ 4th\ derivative\ of\ function\ {e}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x}\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&{e}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e}^{x}\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&{e}^{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {e}^{x}\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&{e}^{x}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {e}^{x}\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&{e}^{x}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ 4th\ derivative\ of\ function\ {x}^{e}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{e}\right)}{dx}\\=&({x}^{e}((0)ln(x) + \frac{(e)(1)}{(x)}))\\=&\frac{{x}^{e}e}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{{x}^{e}e}{x}\right)}{dx}\\=&\frac{-{x}^{e}e}{x^{2}} + \frac{({x}^{e}((0)ln(x) + \frac{(e)(1)}{(x)}))e}{x} + \frac{{x}^{e}*0}{x}\\=&\frac{-{x}^{e}e}{x^{2}} + \frac{{x}^{e}e^{2}}{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-{x}^{e}e}{x^{2}} + \frac{{x}^{e}e^{2}}{x^{2}}\right)}{dx}\\=&\frac{--2{x}^{e}e}{x^{3}} - \frac{({x}^{e}((0)ln(x) + \frac{(e)(1)}{(x)}))e}{x^{2}} - \frac{{x}^{e}*0}{x^{2}} + \frac{-2{x}^{e}e^{2}}{x^{3}} + \frac{({x}^{e}((0)ln(x) + \frac{(e)(1)}{(x)}))e^{2}}{x^{2}} + \frac{{x}^{e}*2e*0}{x^{2}}\\=&\frac{2{x}^{e}e}{x^{3}} - \frac{3{x}^{e}e^{2}}{x^{3}} + \frac{{x}^{e}e^{3}}{x^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2{x}^{e}e}{x^{3}} - \frac{3{x}^{e}e^{2}}{x^{3}} + \frac{{x}^{e}e^{3}}{x^{3}}\right)}{dx}\\=&\frac{2*-3{x}^{e}e}{x^{4}} + \frac{2({x}^{e}((0)ln(x) + \frac{(e)(1)}{(x)}))e}{x^{3}} + \frac{2{x}^{e}*0}{x^{3}} - \frac{3*-3{x}^{e}e^{2}}{x^{4}} - \frac{3({x}^{e}((0)ln(x) + \frac{(e)(1)}{(x)}))e^{2}}{x^{3}} - \frac{3{x}^{e}*2e*0}{x^{3}} + \frac{-3{x}^{e}e^{3}}{x^{4}} + \frac{({x}^{e}((0)ln(x) + \frac{(e)(1)}{(x)}))e^{3}}{x^{3}} + \frac{{x}^{e}*3e^{2}*0}{x^{3}}\\=&\frac{-6{x}^{e}e}{x^{4}} + \frac{11{x}^{e}e^{2}}{x^{4}} - \frac{6{x}^{e}e^{3}}{x^{4}} + \frac{{x}^{e}e^{4}}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!