Mathematics
         
语言:中文    Language:English
                                Equations   
Unfold
                                Math OP  
Fold
                                Inequality
                                Mathematics
                                Fractions
                                Statistics
                                Prime factor
                                Fraction and Decimal Interactions
                                Lenders ToolBox
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
Mathematical calculation:
    Enter the mathematical formula directly and click the "Next" button to get the calculation answer.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Mathematical Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (5-2x)(4-2x) = 0 .
    Question type: Equation
    Solution:Original question:
     (52 x )(42 x ) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 5(42 x )2 x (42 x )
                                             = 5 × 45 × 2 x 2 x (42 x )
                                             = 2010 x 2 x (42 x )
                                             = 2010 x 2 x × 4 + 2 x × 2 x
                                             = 2010 x 8 x + 4 x x
                                             = 2018 x + 4 x x
    The equation is transformed into :
     2018 x + 4 x x = 0

    After the equation is converted into a general formula, it is converted into:
    ( x - 2 )( 2x - 5 )=0
    From
        x - 2 = 0
        2x - 5 = 0

    it is concluded that::
        x1=2
        x2=
5
2
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。