Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line solution of multivariate equations:
    First set the elements of the equation (i.e. the number of unknowns), then click the "Next" button to enter the coefficients of each element of the equation set, and click the "Next" button to obtain the solution of the equation set.
    Note that the coefficients of each element of the equation system can only be numbers, not algebraic expressions (including mathematical functions).
    Current location:Equations > Multivariate equations > Answer
detailed information:
The input equation set is:
 
1417
1000
x -1y = 
15
4
    (1)
-1x + 
7
4
y = 5    (2)
Question solving process:

Multiply both sides of equation (1) by 1000
Divide the two sides of equation (1) by 1417, the equation can be obtained:
         x 
1000
1417
y = 
3750
1417
    (3)
, then add the two sides of equation (3) to both sides of equation (2), the equations are reduced to:
 
1417
1000
x -1y = 
15
4
    (1)
 
5919
5668
y = 
10835
1417
    (2)

Multiply both sides of equation (2) by 5668
Divide both sides of equation (2) by 5919, get the equation:
         y = 
43340
5919
    (4)
, then add the two sides of equation (4) to both sides of equation (1), get the equation:
 
1417
1000
x = 
262145
23676
    (1)
 
5919
5668
y = 
10835
1417
    (2)

The coefficient of the unknown number is reduced to 1, and the equations are reduced to:
 x = 
46250
5919
    (1)
 y = 
43340
5919
    (2)


Therefore, the solution of the equation set is:
x = 
46250
5919
y = 
43340
5919


Convert the solution of the equation set to decimals:
x = 7.813820
y = 7.322183

解方程组的详细方法请参阅:《多元一次方程组的解法》



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。