Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line solution of multivariate equations:
    First set the elements of the equation (i.e. the number of unknowns), then click the "Next" button to enter the coefficients of each element of the equation set, and click the "Next" button to obtain the solution of the equation set.
    Note that the coefficients of each element of the equation system can only be numbers, not algebraic expressions (including mathematical functions).
    Current location:Equations > Multivariate equations > Answer
detailed information:
The input equation set is:
 2330x + 1000y = 12    (1)
 1000x + 2190y = 6    (2)
Question solving process:

Multiply both sides of equation (1) by 100
Divide the two sides of equation (1) by 233, the equation can be obtained:
         
233000
233
x + 
100000
233
y = 
1200
233
    (3)
, then subtract both sides of equation (3) from both sides of equation (2), the equations are reduced to:
 2330x + 1000y = 12    (1)
 
410270
233
y = 
198
233
    (2)

Multiply both sides of equation (2) by 23300
Divide both sides of equation (2) by 41027, get the equation:
         
5861000
5861
y = 
19800
41027
    (4)
, then subtract both sides of equation (4) from both sides of equation (1), get the equation:
 2330x = 
472524
41027
    (1)
 
410270
233
y = 
198
233
    (2)

The coefficient of the unknown number is reduced to 1, and the equations are reduced to:
 x = 
1014
205135
    (1)
 y = 
23067
47796455
    (2)


Therefore, the solution of the equation set is:
x = 
1014
205135
y = 
23067
47796455


Convert the solution of the equation set to decimals:
x = 0.004943
y = 0.000483

解方程组的详细方法请参阅:《多元一次方程组的解法》



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。