Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality 6791.86+1238.8n+(155.03n+22.01n^2)/(240.54+66.03n)*(45.59n+11n^2)-1.25*(747.78*(3.86+n)+(267.21n+6.24n^2)*(911.91n+12.49n^2)/(1603.23+37.47n)) ≥0 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
        6791.86 + 1238.8 * n + ( 155.03 * n + 22.01 * n ^ 2 ) / ( 240.54 + 66.03 * n ) * ( 45.59 * n + 11 * n ^ 2 ) - 1.25 * ( 747.78 * ( 3.86 + n ) + ( 267.21 * n + 6.24 * n ^ 2 ) * ( 911.91 * n + 12.49 * n ^ 2 ) / ( 1603.23 + 37.47 * n ) ) ≥0         (1)
        From the definition field of divisor
         240.54 + 66.03 * x ≠ 0        (2 )
        From the definition field of divisor
         1603.23 + 37.47 * x ≠ 0        (3 )

    From inequality(1):
         -3.64289 ≤ n ≤ 5.603624 或  n ≥ 150.056405
    From inequality(2):
         n < -3.64289 或  n > -3.64289
    From inequality(3):
         n < -42.78703 或  n > -42.78703

    From inequalities (1) and (2)
         -3.64289 < n ≤ 5.603624 或  n ≥ 150.056405    (4)
    From inequalities (3) and (4)
         -3.64289 < n ≤ 5.603624 或  n ≥ 150.056405    (5)

    The final solution set is :

         -3.64289 < n ≤ 5.603624 或  n ≥ 150.056405




Your problem has not been solved here? Please take a look at the  hot problems !


Return