Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality sqrt((0.001/sqrt3/0.8)^2+4*(0.058/1.795/n)^2) ≤0.01 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
         sqrt ( ( 0.001 / sqrt 3 / 0.8 ) ^ 2 + 4 * ( 0.058 / 1.795 / n ) ^ 2 ) ≤0.01         (1)
        From the definition field of divisor
        x ≠ 0        (2 )
        From the definition field of √
         ( 0.001 / sqrt 3 / 0.8 ) ^ 2 + 4 * ( 0.058 / 1.795 / x ) ^ 2 ≥ 0        (3 )

    From inequality(1):
         n ≤ -√5247651/√125000 或  n ≥ √5247651/√125000
    From inequality(2):
         n < 0 或  n > 0
    From inequality(3):
         n ∈ R (R is all real numbers),that is, in the real number range, the inequality is always established!

    From inequalities (1) and (2)
         n ≤ -√5247651/√125000 或  n ≥ √5247651/√125000    (4)
    From inequalities (3) and (4)
         n ≤ -√5247651/√125000 或  n ≥ √5247651/√125000    (5)

    The final solution set is :

         n ≤ -√5247651/√125000 或  n ≥ √5247651/√125000




Your problem has not been solved here? Please take a look at the  hot problems !


Return