Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality sqrt((237960*18*1.22÷(-0.5*x^4+55.5*x^3-532*x^2+36088*x))^2+(661*7÷50.4÷x)^2) <200 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
         sqrt ( ( 237960 * 18 * 1.22 ÷ ( -0.5 * x ^ 4 + 55.5 * x ^ 3 - 532 * x ^ 2 + 36088 * x ) ) ^ 2 + ( 661 * 7 ÷ 50.4 ÷ x ) ^ 2 ) <200         (1)
        From the definition field of √
         ( 237960 * 18 * 1.22 ÷ ( -0.5 * x ^ 4 + 55.5 * x ^ 3 - 532 * x ^ 2 + 36088 * x ) ) ^ 2 + ( 661 * 7 ÷ 50.4 ÷ x ) ^ 2 ≥ 0        (2 )

    From inequality(1):
         x < -0.849051 或  0.86445 < x < 107.310267 或  x > 107.392737
    From inequality(2):
         x ∈ R (R is all real numbers),that is, in the real number range, the inequality is always established!

    From inequalities (1) and (2)
         x < -0.849051 或  0.86445 < x < 107.310267 或  x > 107.392737    (3)

    The final solution set is :

         x < -0.849051 或  0.86445 < x < 107.310267 或  x > 107.392737




Your problem has not been solved here? Please take a look at the  hot problems !


Return