Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality 0     Question type: Inequality
    Solution:
    The inequality can be reduced to 8 inequalities:
        0 < lg x         (1)
         lg x < ln x         (2)
        From the definition field of lg
        x > 0        (3 )
         ln x < sin x         (4)
        From the definition field of ln
        x > 0        (5 )
         sin x < cos x         (6)
         cos x < x         (7)
         x < x ^ 2         (8)
         x ^ 2 < e x         (9)
         e x <10 ^ x         (10)

    From inequality(1):
         x > 1
    From inequality(2):
         x > 1
    From inequality(3):
         x > 0
    From inequality(4):
         x < 2.219107
    From inequality(5):
         x > 0
    From inequality(6):
         -14.922565 < x < -11.780972 或  -8.63938 < x < -5.497787 或  -2.356194 < x < 0.785398 或  3.926991 < x < 7.068583 或  10.210176 < x < 13.351769
    From inequality(7):
         x > 0.739085
    From inequality(8):
         x < 0 或  x > 1
    From inequality(9):
         x > -0.703467
    From inequality(10):
         x > 0

    From inequalities (1) and (2)
         x > 1    (11)
    From inequalities (3) and (11)
         x > 1    (12)
    From inequalities (4) and (12)
         1 < x < 2.219107     (13)
    From inequalities (5) and (13)
         1 < x < 2.219107     (14)
    From inequalities (6) and (14)
            (15)
    From inequalities (7) and (15)
        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!    (16)
    From inequalities (8) and (16)
        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!    (17)
    From inequalities (9) and (17)
        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!    (18)
    From inequalities (10) and (18)
        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!    (19)

    The final solution set is :

        x ∈ Φ (Φ is empty)that is, the inequality will never be estatlished within the real number range!




Your problem has not been solved here? Please take a look at the  hot problems !