There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ tan(x) + ln(cos(x)) - \frac{1}{cos(x)} + ln(sec(x) + tan(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan(x) + ln(cos(x)) - \frac{1}{cos(x)} + ln(sec(x) + tan(x))\right)}{dx}\\=&sec^{2}(x)(1) + \frac{-sin(x)}{(cos(x))} - \frac{sin(x)}{cos^{2}(x)} + \frac{(sec(x)tan(x) + sec^{2}(x)(1))}{(sec(x) + tan(x))}\\=&sec^{2}(x) - \frac{sin(x)}{cos(x)} - \frac{sin(x)}{cos^{2}(x)} + \frac{tan(x)sec(x)}{(sec(x) + tan(x))} + \frac{sec^{2}(x)}{(sec(x) + tan(x))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !