Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ \frac{(3x + {x}^{3} - x + 1)x}{3} + 2 - {x}^{3} + {e}^{2}x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xe^{2} + \frac{1}{3}x^{4} + \frac{1}{3}x + \frac{2}{3}x^{2} - x^{3} + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe^{2} + \frac{1}{3}x^{4} + \frac{1}{3}x + \frac{2}{3}x^{2} - x^{3} + 2\right)}{dx}\\=&e^{2} + x*2e*0 + \frac{1}{3}*4x^{3} + \frac{1}{3} + \frac{2}{3}*2x - 3x^{2} + 0\\=&e^{2} + \frac{4x^{3}}{3} + \frac{4x}{3} - 3x^{2} + \frac{1}{3}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{2} + \frac{4x^{3}}{3} + \frac{4x}{3} - 3x^{2} + \frac{1}{3}\right)}{dx}\\=&2e*0 + \frac{4*3x^{2}}{3} + \frac{4}{3} - 3*2x + 0\\=&4x^{2} - 6x + \frac{4}{3}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 4x^{2} - 6x + \frac{4}{3}\right)}{dx}\\=&4*2x - 6 + 0\\=&8x - 6\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return