There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(\frac{((x + 1)({x}^{2} - 2))}{(3 - x)})}^{1}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}x^{3}}{(-x + 3)} + \frac{\frac{1}{2}x^{2}}{(-x + 3)} - \frac{x}{(-x + 3)} - \frac{1}{(-x + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}x^{3}}{(-x + 3)} + \frac{\frac{1}{2}x^{2}}{(-x + 3)} - \frac{x}{(-x + 3)} - \frac{1}{(-x + 3)}\right)}{dx}\\=&\frac{1}{2}(\frac{-(-1 + 0)}{(-x + 3)^{2}})x^{3} + \frac{\frac{1}{2}*3x^{2}}{(-x + 3)} + \frac{1}{2}(\frac{-(-1 + 0)}{(-x + 3)^{2}})x^{2} + \frac{\frac{1}{2}*2x}{(-x + 3)} - (\frac{-(-1 + 0)}{(-x + 3)^{2}})x - \frac{1}{(-x + 3)} - (\frac{-(-1 + 0)}{(-x + 3)^{2}})\\=&\frac{x^{3}}{2(-x + 3)^{2}} + \frac{3x^{2}}{2(-x + 3)} + \frac{x^{2}}{2(-x + 3)^{2}} + \frac{x}{(-x + 3)} - \frac{x}{(-x + 3)^{2}} - \frac{1}{(-x + 3)^{2}} - \frac{1}{(-x + 3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !