There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{x}{(a{x}^{2} + bx + c)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(ax^{2} + bx + c)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(ax^{2} + bx + c)}\right)}{dx}\\=&(\frac{-(a*2x + b + 0)}{(ax^{2} + bx + c)^{2}})x + \frac{1}{(ax^{2} + bx + c)}\\=&\frac{-2ax^{2}}{(ax^{2} + bx + c)^{2}} - \frac{bx}{(ax^{2} + bx + c)^{2}} + \frac{1}{(ax^{2} + bx + c)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !