There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ xxx + e^{x}xsin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xe^{x}sin(x) + x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe^{x}sin(x) + x^{3}\right)}{dx}\\=&e^{x}sin(x) + xe^{x}sin(x) + xe^{x}cos(x) + 3x^{2}\\=&e^{x}sin(x) + xe^{x}sin(x) + xe^{x}cos(x) + 3x^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{x}sin(x) + xe^{x}sin(x) + xe^{x}cos(x) + 3x^{2}\right)}{dx}\\=&e^{x}sin(x) + e^{x}cos(x) + e^{x}sin(x) + xe^{x}sin(x) + xe^{x}cos(x) + e^{x}cos(x) + xe^{x}cos(x) + xe^{x}*-sin(x) + 3*2x\\=&2e^{x}sin(x) + 2e^{x}cos(x) + 2xe^{x}cos(x) + 6x\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2e^{x}sin(x) + 2e^{x}cos(x) + 2xe^{x}cos(x) + 6x\right)}{dx}\\=&2e^{x}sin(x) + 2e^{x}cos(x) + 2e^{x}cos(x) + 2e^{x}*-sin(x) + 2e^{x}cos(x) + 2xe^{x}cos(x) + 2xe^{x}*-sin(x) + 6\\=&6e^{x}cos(x) + 2xe^{x}cos(x) - 2xe^{x}sin(x) + 6\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !