Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(-0.23747901 - 0.92974009{x}^{2}ln(x) - 1.923826ln(y))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(-0.92974009xln(x) - 1.923826ln(y) - 0.23747901)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(-0.92974009xln(x) - 1.923826ln(y) - 0.23747901)}\right)}{dx}\\=&({e}^{(-0.92974009xln(x) - 1.923826ln(y) - 0.23747901)}((-0.92974009ln(x) - \frac{0.92974009x}{(x)} - \frac{1.923826*0}{(y)} + 0)ln(e) + \frac{(-0.92974009xln(x) - 1.923826ln(y) - 0.23747901)(0)}{(e)}))\\=&-0.92974009{e}^{(-0.92974009xln(x) - 1.923826ln(y) - 0.23747901)}ln(x) - 0.92974009{e}^{(-0.92974009xln(x) - 1.923826ln(y) - 0.23747901)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return