There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{x}^{2}}^{(x - {x}^{-1})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x^{2}}^{(x - \frac{1}{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x^{2}}^{(x - \frac{1}{x})}\right)}{dx}\\=&({x^{2}}^{(x - \frac{1}{x})}((1 - \frac{-1}{x^{2}})ln(x^{2}) + \frac{(x - \frac{1}{x})(2x)}{(x^{2})}))\\=&\frac{{x^{2}}^{(x - \frac{1}{x})}ln(x^{2})}{x^{2}} + {x^{2}}^{(x - \frac{1}{x})}ln(x^{2}) + 2{x^{2}}^{(x - \frac{1}{x})} - \frac{2{x^{2}}^{(x - \frac{1}{x})}}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !