Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ f(y{e}^{(xy)} + 3x - y + 1)dx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = fydx{e}^{(yx)} + 3fdx^{2} - fydx + fdx\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( fydx{e}^{(yx)} + 3fdx^{2} - fydx + fdx\right)}{dx}\\=&fyd{e}^{(yx)} + fydx({e}^{(yx)}((y)ln(e) + \frac{(yx)(0)}{(e)})) + 3fd*2x - fyd + fd\\=&fyd{e}^{(yx)} + fy^{2}dx{e}^{(yx)} + 6fdx - fyd + fd\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return