There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (y{e}^{(xy)} + 3x - y + 1)dx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ydx{e}^{(yx)} + 3dx^{2} - ydx + dx\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ydx{e}^{(yx)} + 3dx^{2} - ydx + dx\right)}{dx}\\=&yd{e}^{(yx)} + ydx({e}^{(yx)}((y)ln(e) + \frac{(yx)(0)}{(e)})) + 3d*2x - yd + d\\=&yd{e}^{(yx)} + y^{2}dx{e}^{(yx)} + 6dx - yd + d\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !