There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}arcsin(x) + 2(\frac{{(1 - {x}^{2})}^{1}}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}arcsin(x) - x^{2} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}arcsin(x) - x^{2} + 1\right)}{dx}\\=&2xarcsin(x) + x^{2}(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) - 2x + 0\\=&2xarcsin(x) + \frac{x^{2}}{(-x^{2} + 1)^{\frac{1}{2}}} - 2x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !