Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(3x - cos(x))} + xln(x) + cos(π)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(3x - cos(x))} + xln(x) + cos(π)\right)}{dx}\\=&({e}^{(3x - cos(x))}((3 - -sin(x))ln(e) + \frac{(3x - cos(x))(0)}{(e)})) + ln(x) + \frac{x}{(x)} + -sin(π)*0\\=&{e}^{(3x - cos(x))}sin(x) + 3{e}^{(3x - cos(x))} + ln(x) + 1\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return