There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({2}^{(2x + 3)}){ln(x)}^{(2x + 3)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {2}^{(2x + 3)}{ln(x)}^{(2x + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{(2x + 3)}{ln(x)}^{(2x + 3)}\right)}{dx}\\=&({2}^{(2x + 3)}((2 + 0)ln(2) + \frac{(2x + 3)(0)}{(2)})){ln(x)}^{(2x + 3)} + {2}^{(2x + 3)}({ln(x)}^{(2x + 3)}((2 + 0)ln(ln(x)) + \frac{(2x + 3)(\frac{1}{(x)})}{(ln(x))}))\\=&2 * {2}^{(2x + 3)}{ln(x)}^{(2x + 3)}ln(2) + 2{ln(x)}^{(2x + 3)}{2}^{(2x + 3)}ln(ln(x)) + \frac{2{ln(x)}^{(2x + 3)}{2}^{(2x + 3)}}{ln(x)} + \frac{3{ln(x)}^{(2x + 3)}{2}^{(2x + 3)}}{xln(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !