There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ \frac{{(1 - 3x + {x}^{2})}^{1}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -x + \frac{1}{3}x^{2} + \frac{1}{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -x + \frac{1}{3}x^{2} + \frac{1}{3}\right)}{dx}\\=&-1 + \frac{1}{3}*2x + 0\\=&\frac{2x}{3} - 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x}{3} - 1\right)}{dx}\\=&\frac{2}{3} + 0\\=&\frac{2}{3}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{3}\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !