There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{2{(x)}^{(\frac{2}{3})}}{(x - 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x^{\frac{2}{3}}}{(x - 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x^{\frac{2}{3}}}{(x - 2)}\right)}{dx}\\=&2(\frac{-(1 + 0)}{(x - 2)^{2}})x^{\frac{2}{3}} + \frac{2*\frac{2}{3}}{(x - 2)x^{\frac{1}{3}}}\\=&\frac{-2x^{\frac{2}{3}}}{(x - 2)^{2}} + \frac{4}{3(x - 2)x^{\frac{1}{3}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x^{\frac{2}{3}}}{(x - 2)^{2}} + \frac{4}{3(x - 2)x^{\frac{1}{3}}}\right)}{dx}\\=&-2(\frac{-2(1 + 0)}{(x - 2)^{3}})x^{\frac{2}{3}} - \frac{2*\frac{2}{3}}{(x - 2)^{2}x^{\frac{1}{3}}} + \frac{4(\frac{-(1 + 0)}{(x - 2)^{2}})}{3x^{\frac{1}{3}}} + \frac{4*\frac{-1}{3}}{3(x - 2)x^{\frac{4}{3}}}\\=&\frac{4x^{\frac{2}{3}}}{(x - 2)^{3}} - \frac{8}{3(x - 2)^{2}x^{\frac{1}{3}}} - \frac{4}{9(x - 2)x^{\frac{4}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !