Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({e}^{(-1000x)})(1800000{x}^{2} + 2490x + 3)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 1800000x^{2}{e}^{(-1000x)} + 2490x{e}^{(-1000x)} + 3{e}^{(-1000x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 1800000x^{2}{e}^{(-1000x)} + 2490x{e}^{(-1000x)} + 3{e}^{(-1000x)}\right)}{dx}\\=&1800000*2x{e}^{(-1000x)} + 1800000x^{2}({e}^{(-1000x)}((-1000)ln(e) + \frac{(-1000x)(0)}{(e)})) + 2490{e}^{(-1000x)} + 2490x({e}^{(-1000x)}((-1000)ln(e) + \frac{(-1000x)(0)}{(e)})) + 3({e}^{(-1000x)}((-1000)ln(e) + \frac{(-1000x)(0)}{(e)}))\\=&1110000x{e}^{(-1000x)} - 510{e}^{(-1000x)} - 1800000000x^{2}{e}^{(-1000x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return