There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{(x)}^{x}}^{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {{x}^{x}}^{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{x}^{x}}^{n}\right)}{dx}\\=&({{x}^{x}}^{n}((0)ln({x}^{x}) + \frac{(n)(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))}{({x}^{x})}))\\=&n{{x}^{x}}^{n}ln(x) + n{{x}^{x}}^{n}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !