There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2977.06 + 137.6191{(x - 0.00414)}^{0.50369} - 6.6082x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 137.6191(x - 0.00414)^{\frac{50369}{100000}} - 6.6082x + 2977.06\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 137.6191(x - 0.00414)^{\frac{50369}{100000}} - 6.6082x + 2977.06\right)}{dx}\\=&137.6191(\frac{0.50369(1 + 0)}{(x - 0.00414)^{\frac{49631}{100000}}}) - 6.6082 + 0\\=&\frac{69.317364479}{(x - 0.00414)^{\frac{49631}{100000}}} - 6.6082\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !