There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(ln(ln(\frac{1}{x})))}{(\frac{1}{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(ln(\frac{1}{x}))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(ln(\frac{1}{x}))\right)}{dx}\\=&ln(ln(\frac{1}{x})) + \frac{x*-1}{(ln(\frac{1}{x}))(\frac{1}{x})x^{2}}\\=&ln(ln(\frac{1}{x})) - \frac{1}{ln(\frac{1}{x})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !